Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticPi






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticPi[n,z,m] > Differential equations > Ordinary linear differential equations and wronskians > For the direct function itself > With respect to n





http://functions.wolfram.com/08.06.13.0002.01









  


  










Input Form





2 (m - n) (n - 1) n D[w[n], {n, 3}] + (8 n + 8 m n - 13 n^2 - 3 m) D[w[n], {n, 2}] + 4 (1 + m - 4 n) D[w[n], n] - 2 w[n] == (Sqrt[1 - m Sin[z]^2] Sin[2 z])/(n Sin[z]^2 - 1)^3 /; w[n] == EllipticPi[n, z, m]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["m", "-", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], " ", "n", " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["n", ",", "3"]], "}"]]], RowBox[List["w", "[", "n", "]"]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "n"]], "+", RowBox[List["8", " ", "m", " ", "n"]], "-", RowBox[List["13", " ", SuperscriptBox["n", "2"]]], "-", RowBox[List["3", " ", "m"]]]], ")"]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["n", ",", "2"]], "}"]]], RowBox[List["w", "[", "n", "]"]]]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "+", "m", "-", RowBox[List["4", " ", "n"]]]], ")"]], " ", RowBox[List[SubscriptBox["\[PartialD]", "n"], RowBox[List["w", "[", "n", "]"]]]]]], "-", RowBox[List["2", " ", RowBox[List["w", "[", "n", "]"]]]]]], "\[Equal]", FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["n", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "-", "1"]], ")"]], "3"]]]], "/;", RowBox[List[RowBox[List["w", "[", "n", "]"]], "\[Equal]", RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 3 </mn> </msup> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> n </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 13 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 2 </mn> </msup> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mfrac> <mrow> <mo> &#8706; </mo> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <mi> n </mi> </mrow> </mfrac> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mfrac> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <ci> n </ci> <apply> <partialdiff /> <bvar> <ci> n </ci> <degree> <cn type='integer'> 3 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -13 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> m </ci> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> n </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <partialdiff /> <bvar> <ci> n </ci> </bvar> <apply> <ci> w </ci> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> w </ci> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> n </ci> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> n </ci> </apply> <apply> <ci> EllipticPi </ci> <ci> n </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["m_", "-", "n_"]], ")"]], " ", RowBox[List["(", RowBox[List["n_", "-", "1"]], ")"]], " ", "n_", " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["n_", ",", "3"]], "}"]]]]], RowBox[List["w", "[", "n_", "]"]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["8", " ", "n_"]], "+", RowBox[List["8", " ", "m_", " ", "n_"]], "-", RowBox[List["13", " ", SuperscriptBox["n_", "2"]]], "-", RowBox[List["3", " ", "m_"]]]], ")"]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["n_", ",", "2"]], "}"]]]]], RowBox[List["w", "[", "n_", "]"]]]]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "+", "m_", "-", RowBox[List["4", " ", "n_"]]]], ")"]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["n_"]]], RowBox[List["w", "[", "n_", "]"]]]]]], "-", RowBox[List["2", " ", RowBox[List["w", "[", "n_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["n", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "-", "1"]], ")"]], "3"]], "/;", RowBox[List[RowBox[List["w", "[", "n", "]"]], "\[Equal]", RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.