Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticPi






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticPi[n,z,m] > Differential equations > Ordinary nonlinear differential equations





http://functions.wolfram.com/08.06.13.0003.01









  


  










Input Form





Derivative[1][w][z]^6 (-1 + Derivative[1][w][z]^2) (27 m^2 n + 4 (m - n)^3 Derivative[1][w][z]^2)^2 (1 + (-1 + m) (-1 + n)^2 Derivative[1][w][z]^2) + Derivative[1][w][z]^4 (-243 m^4 n^2 - 9 m^2 n (-3 m (-12 + n) n^2 - 10 n^3 + 3 m^2 n (4 + n (-16 + 3 n)) + m^3 (16 + 6 n (-5 + 3 n))) Derivative[1][w][z]^2 - 2 (m - n)^2 (2 m (-10 + n) n^3 + 4 n^4 - 3 m^2 (-9 + n) n^2 (-1 + 2 n) + 4 m^4 (-1 + n) (-2 + 3 n) + m^3 n (8 + 3 (5 - 11 n) n)) Derivative[1][w][z]^4 + 8 (-1 + m) (m - n)^5 (-1 + n) n Derivative[1][w][z]^6) Derivative[2][w][z]^2 + n Derivative[1][w][z]^2 (-27 m^4 n - m^2 (m - n)^2 (-10 n + m (-8 + 9 n)) Derivative[1][w][z]^2 + (-1 + m) (m - n)^4 n Derivative[1][w][z]^4) Derivative[2][w][z]^4 - m^4 n^2 Derivative[2][w][z]^6 == 0 /; w[z] == EllipticPi[n, z, m]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["27", " ", SuperscriptBox["m", "2"], " ", "n"]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "n"]], ")"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "243"]], " ", SuperscriptBox["m", "4"], " ", SuperscriptBox["n", "2"]]], "-", RowBox[List["9", " ", SuperscriptBox["m", "2"], " ", "n", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "12"]], "+", "n"]], ")"]], " ", SuperscriptBox["n", "2"]]], "-", RowBox[List["10", " ", SuperscriptBox["n", "3"]]], "+", RowBox[List["3", " ", SuperscriptBox["m", "2"], " ", "n", " ", RowBox[List["(", RowBox[List["4", "+", RowBox[List["n", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "16"]], "+", RowBox[List["3", " ", "n"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["m", "3"], " ", RowBox[List["(", RowBox[List["16", "+", RowBox[List["6", " ", "n", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["3", " ", "n"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "n"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "10"]], "+", "n"]], ")"]], " ", SuperscriptBox["n", "3"]]], "+", RowBox[List["4", " ", SuperscriptBox["n", "4"]]], "-", RowBox[List["3", " ", SuperscriptBox["m", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "9"]], "+", "n"]], ")"]], " ", SuperscriptBox["n", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n"]]]], ")"]]]], "+", RowBox[List["4", " ", SuperscriptBox["m", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["3", " ", "n"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["m", "3"], " ", "n", " ", RowBox[List["(", RowBox[List["8", "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["11", " ", "n"]]]], ")"]], " ", "n"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"]]], "+", RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "n"]], ")"]], "5"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], " ", "n", " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List["n", " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "27"]], " ", SuperscriptBox["m", "4"], " ", "n"]], "-", RowBox[List[SuperscriptBox["m", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "n"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "10"]], " ", "n"]], "+", RowBox[List["m", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8"]], "+", RowBox[List["9", " ", "n"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", "n"]], ")"]], "4"], " ", "n", " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "4"]]], "-", RowBox[List[SuperscriptBox["m", "4"], " ", SuperscriptBox["n", "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "6"]]]]], "\[Equal]", "0"]], "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 27 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> - </mo> <mrow> <mn> 11 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 10 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 16 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 16 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 12 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 10 </mn> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 3 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 243 </mn> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> w </mi> <mi> &#8242;&#8242; </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 27 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 10 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> w </mi> <mi> &#8242;&#8242; </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mi> m </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> w </mi> <mi> &#8242;&#8242; </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> </mrow> </mrow> <mo> &#10869; </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 27 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <ci> n </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <ci> n </ci> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> n </ci> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <ci> n </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> n </ci> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -9 </cn> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -10 </cn> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> 3 </cn> </apply> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <ci> n </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <ci> n </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> n </ci> </apply> <cn type='integer'> -5 </cn> </apply> </apply> <cn type='integer'> 16 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> n </ci> <apply> <plus /> <apply> <times /> <ci> n </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> n </ci> </apply> <cn type='integer'> -16 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -12 </cn> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 243 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <ci> n </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -27 </cn> <ci> n </ci> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> m </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <ci> n </ci> </apply> <cn type='integer'> -8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <ci> n </ci> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <ci> EllipticPi </ci> <ci> n </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["27", " ", SuperscriptBox["m_", "2"], " ", "n_"]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["m_", "-", "n_"]], ")"]], "3"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m_"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n_"]], ")"]], "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "243"]], " ", SuperscriptBox["m_", "4"], " ", SuperscriptBox["n_", "2"]]], "-", RowBox[List["9", " ", SuperscriptBox["m_", "2"], " ", "n_", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", "m_", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "12"]], "+", "n_"]], ")"]], " ", SuperscriptBox["n_", "2"]]], "-", RowBox[List["10", " ", SuperscriptBox["n_", "3"]]], "+", RowBox[List["3", " ", SuperscriptBox["m_", "2"], " ", "n_", " ", RowBox[List["(", RowBox[List["4", "+", RowBox[List["n_", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "16"]], "+", RowBox[List["3", " ", "n_"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["m_", "3"], " ", RowBox[List["(", RowBox[List["16", "+", RowBox[List["6", " ", "n_", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["3", " ", "n_"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "-", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["m_", "-", "n_"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m_", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "10"]], "+", "n_"]], ")"]], " ", SuperscriptBox["n_", "3"]]], "+", RowBox[List["4", " ", SuperscriptBox["n_", "4"]]], "-", RowBox[List["3", " ", SuperscriptBox["m_", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "9"]], "+", "n_"]], ")"]], " ", SuperscriptBox["n_", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "n_"]]]], ")"]]]], "+", RowBox[List["4", " ", SuperscriptBox["m_", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n_"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["3", " ", "n_"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["m_", "3"], " ", "n_", " ", RowBox[List["(", RowBox[List["8", "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List["5", "-", RowBox[List["11", " ", "n_"]]]], ")"]], " ", "n_"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"]]], "+", RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m_"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m_", "-", "n_"]], ")"]], "5"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n_"]], ")"]], " ", "n_", " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "6"]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List["n_", " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "27"]], " ", SuperscriptBox["m_", "4"], " ", "n_"]], "-", RowBox[List[SuperscriptBox["m_", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m_", "-", "n_"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "10"]], " ", "n_"]], "+", RowBox[List["m_", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8"]], "+", RowBox[List["9", " ", "n_"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m_"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m_", "-", "n_"]], ")"]], "4"], " ", "n_", " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "4"]]], "-", RowBox[List[SuperscriptBox["m_", "4"], " ", SuperscriptBox["n_", "2"], " ", SuperscriptBox[RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "6"]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.