Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticPi






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticPi[n,z,m] > Transformations > Products, sums, and powers of the direct function > Sums of the direct function





http://functions.wolfram.com/08.06.16.0003.01









  


  










Input Form





EllipticPi[n, Subscript[z, 1], m] + EllipticPi[n, Subscript[z, 2], m] == EllipticPi[n, z, m] - Sqrt[n/((1 - n) (n - m))] ArcTan[(Sqrt[(1 - n) n (n - m)] Sin[z] Sin[Subscript[z, 1]] Sin[Subscript[z, 2]])/(1 - n Sin[z]^2 + n Cos[z] Sqrt[1 - m Sin[z]^2] Sin[Subscript[z, 1]] Sin[Subscript[z, 2]])] /; z == ArcCos[(Cos[Subscript[z, 1]] Cos[Subscript[z, 2]] - Sin[Subscript[z, 1]] Sin[Subscript[z, 2]] Sqrt[(1 - m Sin[Subscript[z, 1]]^2) (1 - m Sin[Subscript[z, 2]]^2)])/ (1 - m Sin[Subscript[z, 1]]^2 Sin[Subscript[z, 2]]^2)] && 0 < m < n < 1 && 0 < Subscript[z, 1] < 1 && 0 < Subscript[z, 2] < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", SubscriptBox["z", "1"], ",", "m"]], "]"]], "+", RowBox[List["EllipticPi", "[", RowBox[List["n", ",", SubscriptBox["z", "2"], ",", "m"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]], "-", RowBox[List[SqrtBox[FractionBox["n", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]]]]]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "n"]], ")"]], " ", "n", " ", RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]]]]], " ", RowBox[List["Sin", "[", "z", "]"]], " ", RowBox[List["Sin", "[", SubscriptBox["z", "1"], "]"]], " ", RowBox[List["Sin", "[", SubscriptBox["z", "2"], "]"]]]], RowBox[List["1", "-", RowBox[List["n", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "+", RowBox[List["n", " ", RowBox[List["Cos", "[", "z", "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], " ", RowBox[List["Sin", "[", SubscriptBox["z", "1"], "]"]], " ", RowBox[List["Sin", "[", SubscriptBox["z", "2"], "]"]]]]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["z", "\[Equal]", RowBox[List["ArcCos", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", SubscriptBox["z", "1"], "]"]], " ", RowBox[List["Cos", "[", SubscriptBox["z", "2"], "]"]]]], "-", RowBox[List[RowBox[List["Sin", "[", SubscriptBox["z", "1"], "]"]], " ", RowBox[List["Sin", "[", SubscriptBox["z", "2"], "]"]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", SubscriptBox["z", "1"], "]"]], "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", SubscriptBox["z", "2"], "]"]], "2"]]]]], ")"]]]]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", SubscriptBox["z", "1"], "]"]], "2"], " ", SuperscriptBox[RowBox[List["Sin", "[", SubscriptBox["z", "2"], "]"]], "2"]]]]], ")"]]]], "]"]]]], "\[And]", RowBox[List["0", "<", "m", "<", "n", "<", "1"]], "\[And]", RowBox[List["0", "<", SubscriptBox["z", "1"], "<", "1"]], "\[And]", RowBox[List["0", "<", SubscriptBox["z", "2"], "<", " ", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msqrt> <mfrac> <mi> n </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> z </mi> <mo> &#10869; </mo> <mrow> <msup> <mi> cos </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mi> m </mi> <mo> &lt; </mo> <mi> n </mi> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <ci> EllipticPi </ci> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> m </ci> </apply> <apply> <ci> EllipticPi </ci> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> m </ci> </apply> </apply> <apply> <plus /> <apply> <ci> EllipticPi </ci> <ci> n </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <ci> n </ci> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arctan /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <ci> n </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <ci> z </ci> </apply> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> n </ci> <apply> <cos /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <ci> z </ci> <apply> <arccos /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <cos /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <sin /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <ci> m </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", SubscriptBox["z_", "1"], ",", "m_"]], "]"]], "+", RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", SubscriptBox["z_", "2"], ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]], "-", RowBox[List[SqrtBox[FractionBox["n", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]]]]]], " ", RowBox[List["ArcTan", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "n"]], ")"]], " ", "n", " ", RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]]]]], " ", RowBox[List["Sin", "[", "z", "]"]], " ", RowBox[List["Sin", "[", SubscriptBox["zz", "1"], "]"]], " ", RowBox[List["Sin", "[", SubscriptBox["zz", "2"], "]"]]]], RowBox[List["1", "-", RowBox[List["n", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "+", RowBox[List["n", " ", RowBox[List["Cos", "[", "z", "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]], " ", RowBox[List["Sin", "[", SubscriptBox["zz", "1"], "]"]], " ", RowBox[List["Sin", "[", SubscriptBox["zz", "2"], "]"]]]]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["z", "\[Equal]", RowBox[List["ArcCos", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["Cos", "[", SubscriptBox["zz", "1"], "]"]], " ", RowBox[List["Cos", "[", SubscriptBox["zz", "2"], "]"]]]], "-", RowBox[List[RowBox[List["Sin", "[", SubscriptBox["zz", "1"], "]"]], " ", RowBox[List["Sin", "[", SubscriptBox["zz", "2"], "]"]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", SubscriptBox["zz", "1"], "]"]], "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", SubscriptBox["zz", "2"], "]"]], "2"]]]]], ")"]]]]]]]]], RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", SubscriptBox["zz", "1"], "]"]], "2"], " ", SuperscriptBox[RowBox[List["Sin", "[", SubscriptBox["zz", "2"], "]"]], "2"]]]]]], "]"]]]], "&&", RowBox[List["0", "<", "m", "<", "n", "<", "1"]], "&&", RowBox[List["0", "<", SubscriptBox["zz", "1"], "<", "1"]], "&&", RowBox[List["0", "<", SubscriptBox["zz", "2"], "<", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.