Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
EllipticPi






Mathematica Notation

Traditional Notation









Elliptic Integrals > EllipticPi[n,z,m] > Differentiation > Symbolic differentiation > With respect to m





http://functions.wolfram.com/08.06.20.0016.01









  


  










Input Form





D[EllipticPi[n, z, m], {m, p}] == ((Sin[z]^(2 p + 1) Pochhammer[1/2, p])/ (2 p + 1)) Sum[((Pochhammer[1/2 + p, Subscript[k, 1] + Subscript[k, 2] + Subscript[k, 3]] Pochhammer[1, Subscript[k, 1]])/ (Pochhammer[3/2 + p, Subscript[k, 1] + Subscript[k, 2] + Subscript[k, 3]] Subscript[k, 1]! Subscript[k, 2]! Subscript[k, 3]!)) Pochhammer[1/2, Subscript[k, 2]] Pochhammer[1/2 + p, Subscript[k, 3]] n^Subscript[k, 1] Sin[z]^(2 (Subscript[k, 1] + Subscript[k, 2] + Subscript[k, 3])) m^Subscript[k, 3], {Subscript[k, 1], p, Infinity}, {Subscript[k, 2], 0, Infinity}, {Subscript[k, 3], 0, Infinity}] /; Element[p, Integers] && p >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["m", ",", "p"]], "}"]]], RowBox[List["EllipticPi", "[", RowBox[List["n", ",", "z", ",", "m"]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], RowBox[List[RowBox[List["2", "p"]], "+", "1"]]], RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "p"]], "]"]]]], RowBox[List[RowBox[List["2", "p"]], "+", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "p"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "3"], "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "p"]], ",", RowBox[List[SubscriptBox["k", "1"], "+", SubscriptBox["k", "2"], "+", SubscriptBox["k", "3"]]]]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List["1", ",", SubscriptBox["k", "1"]]], "]"]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "p"]], ",", RowBox[List[SubscriptBox["k", "1"], "+", SubscriptBox["k", "2"], "+", SubscriptBox["k", "3"]]]]], "]"]], " ", RowBox[List[SubscriptBox["k", "1"], "!"]], " ", RowBox[List[SubscriptBox["k", "2"], "!"]], " ", RowBox[List[SubscriptBox["k", "3"], "!"]]]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", SubscriptBox["k", "2"]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "p"]], ",", SubscriptBox["k", "3"]]], "]"]], " ", SuperscriptBox["n", SubscriptBox["k", "1"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[SubscriptBox["k", "1"], "+", SubscriptBox["k", "2"], "+", SubscriptBox["k", "3"]]], ")"]]]]], " ", SuperscriptBox["m", SubscriptBox["k", "3"]]]]]]]]]]]]]], " ", "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> p </mi> </msup> <mrow> <mi> &#928; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ; </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> m </mi> <mi> p </mi> </msup> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> p </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], &quot;p&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mi> p </mi> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <msub> <mi> k </mi> <mn> 3 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> k </mi> <mn> 3 </mn> </msub> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;p&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], RowBox[List[SubscriptBox[&quot;k&quot;, &quot;1&quot;], &quot;+&quot;, SubscriptBox[&quot;k&quot;, &quot;2&quot;], &quot;+&quot;, SubscriptBox[&quot;k&quot;, &quot;3&quot;]]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;1&quot;, &quot;)&quot;]], SubscriptBox[&quot;k&quot;, &quot;1&quot;]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;], &quot;)&quot;]], SubscriptBox[&quot;k&quot;, &quot;2&quot;]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <msub> <mi> k </mi> <mn> 3 </mn> </msub> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;p&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;)&quot;]], SubscriptBox[&quot;k&quot;, &quot;3&quot;]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> n </mi> <msub> <mi> k </mi> <mn> 1 </mn> </msub> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> k </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> m </mi> <msub> <mi> k </mi> <mn> 3 </mn> </msub> </msup> </mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> k </mi> <mn> 3 </mn> </msub> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;p&quot;, &quot;+&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], &quot;)&quot;]], RowBox[List[SubscriptBox[&quot;k&quot;, &quot;1&quot;], &quot;+&quot;, SubscriptBox[&quot;k&quot;, &quot;2&quot;], &quot;+&quot;, SubscriptBox[&quot;k&quot;, &quot;3&quot;]]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> k </mi> <mn> 3 </mn> </msub> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> p </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> m </ci> <degree> <ci> p </ci> </degree> </bvar> <apply> <ci> EllipticPi </ci> <ci> n </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <ci> p </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <sum /> <bvar> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </bvar> <lowlimit> <ci> p </ci> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> p </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> p </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> m </ci> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> p </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <factorial /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <factorial /> <apply> <ci> Subscript </ci> <ci> k </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> p </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["m_", ",", "p_"]], "}"]]]]], RowBox[List["EllipticPi", "[", RowBox[List["n_", ",", "z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], RowBox[List[RowBox[List["2", " ", "p"]], "+", "1"]]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", "p"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "p"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "3"], "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "p"]], ",", RowBox[List[SubscriptBox["k", "1"], "+", SubscriptBox["k", "2"], "+", SubscriptBox["k", "3"]]]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List["1", ",", SubscriptBox["k", "1"]]], "]"]]]], ")"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[FractionBox["1", "2"], ",", SubscriptBox["k", "2"]]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "p"]], ",", SubscriptBox["k", "3"]]], "]"]], " ", SuperscriptBox["n", SubscriptBox["k", "1"]], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[SubscriptBox["k", "1"], "+", SubscriptBox["k", "2"], "+", SubscriptBox["k", "3"]]], ")"]]]]], " ", SuperscriptBox["m", SubscriptBox["k", "3"]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[FractionBox["3", "2"], "+", "p"]], ",", RowBox[List[SubscriptBox["k", "1"], "+", SubscriptBox["k", "2"], "+", SubscriptBox["k", "3"]]]]], "]"]], " ", RowBox[List[SubscriptBox["k", "1"], "!"]], " ", RowBox[List[SubscriptBox["k", "2"], "!"]], " ", RowBox[List[SubscriptBox["k", "3"], "!"]]]]]]]]]]]]], RowBox[List[RowBox[List["2", " ", "p"]], "+", "1"]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.