Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiZeta






Mathematica Notation

Traditional Notation









Elliptic Integrals > JacobiZeta[z,m] > Series representations > Generalized power series > Expansions at z==-csc-1(m1/2)+Pi u/;uZ





http://functions.wolfram.com/08.07.06.0026.01









  


  










Input Form





JacobiZeta[z, m] == -JacobiZeta[ArcCsc[Sqrt[m]], m] - ((Sqrt[2] EllipticE[m])/(Sqrt[-1 + m] EllipticK[m])) Sqrt[Sqrt[-1 + m] (z - Subscript[z, 0])] + Sqrt[2] Sqrt[Sqrt[-1 + m] (z - Subscript[z, 0])] (z - Subscript[z, 0]) Sum[((2 (-1)^k Binomial[k - 1/2, k])/(2 k + 3)) (Sum[(((-1)^j Binomial[k, j])/(1 - 2 j)) Subscript[p, j, k], {j, 0, k}] + ((EllipticE[m] (3 + 8 k + 4 k^2))/(4 Sqrt[-1 + m] EllipticK[m] (1 + k))) Sum[(((-1)^j Binomial[k + 1, j])/(2 j + 1)) Subscript[p, j, k + 1], {j, 0, k + 1}]) (z - Subscript[z, 0])^k, {k, 0, Infinity}] /; Subscript[z, 0] == -ArcCsc[Sqrt[m]] + Pi u && Element[u, Integers] && Subscript[a, 0] == 1 && Subscript[a, 2 k] == ((-1)^k 2^(2 k))/(2 k + 1)! && Subscript[a, 2 k + 1] == ((-1)^(k - 1) 2^(2 k) (2 - m))/ (Sqrt[m - 1] (2 k + 2)!) && Element[k, Integers] && k >= 0 && Subscript[p, u, 0] == 1 && Subscript[p, u, v] == (1/v) Sum[(u j - v + j) Subscript[a, j] Subscript[p, u, v - j], {j, 1, v}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["JacobiZeta", "[", RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], ",", "m"]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[SqrtBox["2"], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], SqrtBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]]]]], "+", RowBox[List[SqrtBox["2"], SqrtBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]]], RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List["2", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["k", "-", RowBox[List["1", "/", "2"]]]], ",", "k"]], "]"]]]], RowBox[List[RowBox[List["2", " ", "k"]], "+", "3"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "j"]], "]"]]]], RowBox[List["1", "-", RowBox[List["2", "j"]]]]], SubscriptBox["p", RowBox[List["j", ",", "k"]]]]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["EllipticE", "[", "m", "]"]], RowBox[List["(", RowBox[List["3", "+", RowBox[List["8", " ", "k"]], "+", RowBox[List["4", " ", SuperscriptBox["k", "2"]]]]], ")"]]]], RowBox[List["4", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], RowBox[List["EllipticK", "[", "m", "]"]], RowBox[List["(", RowBox[List["1", "+", "k"]], ")"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["k", "+", "1"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["k", "+", "1"]], ",", "j"]], "]"]]]], RowBox[List[RowBox[List["2", "j"]], "+", "1"]]], SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "+", "1"]]]]]]]]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "k"]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["z", "0"], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]], "+", RowBox[List["\[Pi]", " ", "u"]]]]]], "\[And]", RowBox[List["u", "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["a", "0"], "\[Equal]", "1"]], "\[And]", RowBox[List[SubscriptBox["a", RowBox[List["2", "k"]]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List["2", "k"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], ")"]], "!"]]]]], "\[And]", RowBox[List[SubscriptBox["a", RowBox[List[RowBox[List["2", "k"]], "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "-", "1"]]], SuperscriptBox["2", RowBox[List["2", "k"]]], " ", RowBox[List["(", RowBox[List["2", "-", "m"]], ")"]]]], RowBox[List[SqrtBox[RowBox[List["m", "-", "1"]]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "2"]], ")"]], "!"]]]]]]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[SubscriptBox["p", RowBox[List["u", ",", "0"]]], "\[Equal]", "1"]], "\[And]", RowBox[List[SubscriptBox["p", RowBox[List["u", ",", "v"]]], "\[Equal]", RowBox[List[FractionBox["1", "v"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "v"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["u", " ", "j"]], "-", "v", "+", "j"]], ")"]], SubscriptBox["a", "j"], " ", SubscriptBox["p", RowBox[List["u", ",", RowBox[List["v", "-", "j"]]]]]]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> &#918; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> &#918; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <msqrt> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msqrt> <mrow> <msqrt> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msqrt> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> k </mi> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;k&quot;, &quot;-&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> k </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </msub> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> </msub> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mrow> <msup> <mi> csc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> m </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> u </mi> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> &#10869; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> a </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msub> <mo> &#10869; </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> a </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> &#10869; </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mi> k </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> p </mi> <mrow> <mi> u </mi> <mo> , </mo> <mn> 0 </mn> </mrow> </msub> <mo> &#10869; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> p </mi> <mrow> <mi> u </mi> <mo> , </mo> <mi> v </mi> </mrow> </msub> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> v </mi> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> v </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> u </mi> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> + </mo> <mi> j </mi> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> &#8290; </mo> <msub> <mi> p </mi> <mrow> <mi> u </mi> <mo> , </mo> <mrow> <mi> v </mi> <mo> - </mo> <mi> j </mi> </mrow> </mrow> </msub> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> JacobiZeta </ci> <apply> <arccsc /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticE </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> k </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> EllipticE </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <arccsc /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <pi /> <ci> u </ci> </apply> </apply> </apply> <apply> <in /> <ci> u </ci> <integers /> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <ci> &#8469; </ci> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> u </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> u </ci> <ci> v </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> v </ci> </uplimit> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> u </ci> <ci> j </ci> </apply> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> u </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiZeta", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["JacobiZeta", "[", RowBox[List[RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]], ",", "m"]], "]"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["2"], " ", RowBox[List["EllipticE", "[", "m", "]"]]]], ")"]], " ", SqrtBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", RowBox[List["EllipticK", "[", "m", "]"]]]]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["k", "-", FractionBox["1", "2"]]], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "j"]], "]"]]]], ")"]], " ", SubscriptBox["p", RowBox[List["j", ",", "k"]]]]], RowBox[List["1", "-", RowBox[List["2", " ", "j"]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["EllipticE", "[", "m", "]"]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["8", " ", "k"]], "+", RowBox[List["4", " ", SuperscriptBox["k", "2"]]]]], ")"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["k", "+", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["k", "+", "1"]], ",", "j"]], "]"]]]], ")"]], " ", SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "+", "1"]]]]]]], RowBox[List[RowBox[List["2", " ", "j"]], "+", "1"]]]]]]], RowBox[List["4", " ", SqrtBox[RowBox[List[RowBox[List["-", "1"]], "+", "m"]]], " ", RowBox[List["EllipticK", "[", "m", "]"]], " ", RowBox[List["(", RowBox[List["1", "+", "k"]], ")"]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "k"]]], RowBox[List[RowBox[List["2", " ", "k"]], "+", "3"]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["zz", "0"], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["ArcCsc", "[", SqrtBox["m"], "]"]]]], "+", RowBox[List["\[Pi]", " ", "u"]]]]]], "&&", RowBox[List["u", "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["a", "0"], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["a", RowBox[List["2", " ", "k"]]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List["2", " ", "k"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], "!"]]]]], "&&", RowBox[List[SubscriptBox["a", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "-", "1"]]], " ", SuperscriptBox["2", RowBox[List["2", " ", "k"]]], " ", RowBox[List["(", RowBox[List["2", "-", "m"]], ")"]]]], RowBox[List[SqrtBox[RowBox[List["m", "-", "1"]]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "2"]], ")"]], "!"]]]]]]], "&&", RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", "\[GreaterEqual]", "0"]], "&&", RowBox[List[SubscriptBox["p", RowBox[List["u", ",", "0"]]], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["p", RowBox[List["u", ",", "v"]]], "\[Equal]", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "v"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["u", " ", "j"]], "-", "v", "+", "j"]], ")"]], " ", SubscriptBox["a", "j"], " ", SubscriptBox["p", RowBox[List["u", ",", RowBox[List["v", "-", "j"]]]]]]]]], "v"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.