Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiZeta






Mathematica Notation

Traditional Notation









Elliptic Integrals > JacobiZeta[z,m] > Series representations > Generalized power series > Expansions at generic point m==m0 > For the function itself





http://functions.wolfram.com/08.07.06.0031.01









  


  










Input Form





JacobiZeta[z, m] \[Proportional] JacobiZeta[z, Subscript[m, 0]] + (1/(2 (-1 + Subscript[m, 0]) Subscript[m, 0] EllipticK[Subscript[m, 0]])) ((-1 + Subscript[m, 0]) EllipticK[Subscript[m, 0]] JacobiZeta[z, Subscript[m, 0]] + EllipticE[Subscript[m, 0]] (JacobiZeta[z, Subscript[m, 0]] - (Subscript[m, 0] Sin[2 z])/ (2 Sqrt[1 - Subscript[m, 0] Sin[z]^2]))) (m - Subscript[m, 0]) + (1/(16 (Subscript[m, 0] - 1)^2 Subscript[m, 0]^2 (1 - Subscript[m, 0] Sin[z]^2)^(3/2) EllipticK[Subscript[m, 0]]^2)) ((1/2) (Subscript[m, 0] - 1) Subscript[m, 0] (2 - Subscript[m, 0] + Subscript[m, 0] Cos[2 z]) EllipticK[Subscript[m, 0]]^2 (Sin[2 z] - 2 JacobiZeta[z, Subscript[m, 0]] Sqrt[1 - Subscript[m, 0] Sin[z]^2]) - (2 - Subscript[m, 0] + Subscript[m, 0] Cos[2 z]) EllipticE[Subscript[m, 0]]^2 (Subscript[m, 0] Sin[2 z] - 2 JacobiZeta[z, Subscript[m, 0]] Sqrt[1 - Subscript[m, 0] Sin[z]^2]) - EllipticE[Subscript[m, 0]] EllipticK[Subscript[m, 0]] ((-Subscript[m, 0]) (3 - 2 Subscript[m, 0] + Subscript[m, 0] Cos[2 z]) Sin[2 z] + 4 JacobiZeta[z, Subscript[m, 0]] (1 - Subscript[m, 0] Sin[z]^2)^(3/2))) (m - Subscript[m, 0])^2 + \[Ellipsis] /; (m -> Subscript[m, 0])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", SubscriptBox["m", "0"]]], "]"]], "+", RowBox[List[FractionBox["1", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["m", "0"]]], ")"]], " ", SubscriptBox["m", "0"], " ", RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["m", "0"]]], ")"]], " ", RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], " ", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", SubscriptBox["m", "0"]]], "]"]]]], "+", RowBox[List[RowBox[List["EllipticE", "[", SubscriptBox["m", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", SubscriptBox["m", "0"]]], "]"]], "-", FractionBox[RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["Sin", "[", RowBox[List["2", "z"]], "]"]]]], RowBox[List["2", SqrtBox[RowBox[List["1", "-", RowBox[List[SubscriptBox["m", "0"], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]]]]], ")"]]]]]], ")"]], RowBox[List["(", RowBox[List["m", "-", SubscriptBox["m", "0"]]], ")"]]]], " ", "+", RowBox[List[FractionBox["1", RowBox[List["16", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["m", "0"], "-", "1"]], ")"]], "2"], " ", SuperscriptBox[SubscriptBox["m", "0"], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List[SubscriptBox["m", "0"], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], ")"]], RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[SubscriptBox["m", "0"], "-", "1"]], ")"]], " ", SubscriptBox["m", "0"], " ", RowBox[List["(", RowBox[List["2", "-", SubscriptBox["m", "0"], "+", RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]], "-", RowBox[List["2", " ", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", SubscriptBox["m", "0"]]], "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List[SubscriptBox["m", "0"], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["2", "-", SubscriptBox["m", "0"], "+", RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticE", "[", SubscriptBox["m", "0"], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", SubscriptBox["m", "0"]]], "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List[SubscriptBox["m", "0"], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["EllipticE", "[", SubscriptBox["m", "0"], "]"]], " ", RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["m", "0"]]], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", SubscriptBox["m", "0"]]], "+", RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", SubscriptBox["m", "0"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List[SubscriptBox["m", "0"], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], ")"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", SubscriptBox["m", "0"]]], ")"]], "2"]]], " ", "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["m", "\[Rule]", SubscriptBox["m", "0"]]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> &#918; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mi> &#918; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#918; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mfrac> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#918; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msubsup> <mi> m </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> &#918; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> &#918; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> &#918; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> EllipticE </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> EllipticE </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> EllipticE </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <ci> Rule </ci> <ci> m </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiZeta", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", SubscriptBox["mm", "0"]]], "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["mm", "0"]]], ")"]], " ", RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], " ", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", SubscriptBox["mm", "0"]]], "]"]]]], "+", RowBox[List[RowBox[List["EllipticE", "[", SubscriptBox["mm", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", SubscriptBox["mm", "0"]]], "]"]], "-", FractionBox[RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", RowBox[List[SubscriptBox["mm", "0"], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["m", "-", SubscriptBox["mm", "0"]]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["mm", "0"]]], ")"]], " ", SubscriptBox["mm", "0"], " ", RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[SubscriptBox["mm", "0"], "-", "1"]], ")"]], " ", SubscriptBox["mm", "0"], " ", RowBox[List["(", RowBox[List["2", "-", SubscriptBox["mm", "0"], "+", RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]], "-", RowBox[List["2", " ", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", SubscriptBox["mm", "0"]]], "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List[SubscriptBox["mm", "0"], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["2", "-", SubscriptBox["mm", "0"], "+", RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticE", "[", SubscriptBox["mm", "0"], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", SubscriptBox["mm", "0"]]], "]"]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List[SubscriptBox["mm", "0"], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["EllipticE", "[", SubscriptBox["mm", "0"], "]"]], " ", RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["mm", "0"]]], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["2", " ", SubscriptBox["mm", "0"]]], "+", RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "z"]], "]"]]]], "+", RowBox[List["4", " ", RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", SubscriptBox["mm", "0"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List[SubscriptBox["mm", "0"], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", SubscriptBox["mm", "0"]]], ")"]], "2"]]], RowBox[List["16", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["mm", "0"], "-", "1"]], ")"]], "2"], " ", SubsuperscriptBox["mm", "0", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List[SubscriptBox["mm", "0"], " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], ")"]], RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "2"]]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["m", "\[Rule]", SubscriptBox["mm", "0"]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.