Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiZeta






Mathematica Notation

Traditional Notation









Elliptic Integrals > JacobiZeta[z,m] > Identities > Functional identities





http://functions.wolfram.com/08.07.17.0001.01









  


  










Input Form





JacobiZeta[z, m] == I JacobiDN[(-I) EllipticF[z, m], 1 - m] JacobiSC[(-I) EllipticF[z, m], 1 - m] - I JacobiZeta[JacobiAmplitude[(-I) EllipticF[z, m], 1 - m], 1 - m] - (Pi/(2 EllipticK[m] EllipticK[1 - m])) EllipticF[z, m]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]]]], ",", RowBox[List["1", "-", "m"]]]], "]"]], " ", RowBox[List["JacobiSC", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]]]], ",", RowBox[List["1", "-", "m"]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["JacobiZeta", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]]]], ",", RowBox[List["1", "-", "m"]]]], "]"]], ",", RowBox[List["1", "-", "m"]]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List["\[Pi]", " "]], RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]], RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m"]], "]"]]]]], RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> &#918; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> dn </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> &#918; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> am </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <ci> JacobiDN </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <ci> EllipticF </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <ci> JacobiSC </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <ci> EllipticF </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <ci> JacobiZeta </ci> <apply> <ci> JacobiAmplitude </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <ci> EllipticF </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <ci> EllipticF </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiZeta", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["JacobiDN", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]]]], ",", RowBox[List["1", "-", "m"]]]], "]"]], " ", RowBox[List["JacobiSC", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]]]], ",", RowBox[List["1", "-", "m"]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["JacobiZeta", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]]]], ",", RowBox[List["1", "-", "m"]]]], "]"]], ",", RowBox[List["1", "-", "m"]]]], "]"]]]], "-", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["EllipticF", "[", RowBox[List["z", ",", "m"]], "]"]]]], RowBox[List["2", " ", RowBox[List["EllipticK", "[", "m", "]"]], " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", "m"]], "]"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.