Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiZeta






Mathematica Notation

Traditional Notation









Elliptic Integrals > JacobiZeta[z,m] > Representations through equivalent functions > With related functions





http://functions.wolfram.com/08.07.27.0003.01









  


  










Input Form





JacobiZeta[z, m] == Sin[z] (HypergeometricPFQ[{{1/2}, {1/2}, {-2^(-1)}}, {{3/2}, {}, {}}, Sin[z]^2, m Sin[z]^2] - (EllipticE[m]/EllipticK[m]) HypergeometricPFQ[{{1/2}, {1/2}, {1/2}}, {{3/2}, {}, {}}, m Sin[z]^2, Sin[z]^2])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["JacobiZeta", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["Sin", "[", "z", "]"]], RowBox[List["(", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["1", "/", "2"]], "}"]], ",", RowBox[List["{", RowBox[List["1", "/", "2"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", "1"]], "/", "2"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["3", "/", "2"]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"], ",", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], "]"]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["EllipticE", "[", "m", "]"]], " "]], RowBox[List["EllipticK", "[", "m", "]"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["3", "2"], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], ",", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> &#918; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 0 </mn> <mo> &#8290; </mo> <mn> 0 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> </mrow> </mtd> </mtr> </mtable> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <mi> K </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 0 </mn> <mo> &#8290; </mo> <mn> 0 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> </mrow> </mtd> </mtr> </mtable> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> JacobiZeta </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <times /> <apply> <sin /> <ci> z </ci> </apply> <apply> <plus /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> F </ci> <apply> <times /> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <list> <list> <apply> <ci> CompoundExpression </ci> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> Null </ci> </apply> </list> <list> <apply> <ci> CompoundExpression </ci> <apply> <ci> CompoundExpression </ci> <apply> <ci> CompoundExpression </ci> <cn type='rational'> 3 <sep /> 2 </cn> <ci> Null </ci> </apply> <ci> Null </ci> </apply> <ci> Null </ci> </apply> </list> </list> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <ci> EllipticE </ci> <ci> m </ci> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> F </ci> <apply> <times /> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <list> <list> <apply> <ci> CompoundExpression </ci> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <ci> Null </ci> </apply> </list> <list> <apply> <ci> CompoundExpression </ci> <apply> <ci> CompoundExpression </ci> <apply> <ci> CompoundExpression </ci> <cn type='rational'> 3 <sep /> 2 </cn> <ci> Null </ci> </apply> <ci> Null </ci> </apply> <ci> Null </ci> </apply> </list> </list> <ci> m </ci> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <sin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiZeta", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["Sin", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", RowBox[List["-", FractionBox["1", "2"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["3", "2"], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"], ",", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]]]], "]"]], "-", FractionBox[RowBox[List[RowBox[List["EllipticE", "[", "m", "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]], ",", RowBox[List["{", FractionBox["1", "2"], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", FractionBox["3", "2"], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["m", " ", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], ",", SuperscriptBox[RowBox[List["Sin", "[", "z", "]"]], "2"]]], "]"]]]], RowBox[List["EllipticK", "[", "m", "]"]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.