Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Beta






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Beta[a,b] > Specific values > Specialized values > For rational variables ||| For rational variables





http://functions.wolfram.com/06.18.03.0004.01









  


  










Input Form





Beta[m + p/q, n + r/s] == q^n s^m Beta[p/q, r/s] ((Product[q k - q + p, {k, 1, m}] Product[s k - s + r, {k, 1, n}])/ Product[q s k - q s + q r + p s, {k, 1, m + n}]) /; Element[m, Integers] && Element[n, Integers] && Element[p, Integers] && p > 0 && Element[q, Integers] && q > 0 && Element[r, Integers] && r > 0 && Element[s, Integers] && s > 0 && p < q && r < s










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Beta", "[", RowBox[List[RowBox[List["m", "+", FractionBox["p", "q"]]], ",", RowBox[List["n", "+", FractionBox["r", "s"]]]]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["q", "n"], " ", SuperscriptBox["s", "m"], RowBox[List["Beta", "[", RowBox[List[FractionBox["p", "q"], ",", FractionBox["r", "s"]]], "]"]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "m"], RowBox[List["(", RowBox[List[RowBox[List["q", " ", "k"]], "-", "q", "+", "p"]], ")"]]]], ")"]], RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "n"], RowBox[List["(", RowBox[List[RowBox[List["s", " ", "k"]], "-", "s", "+", "r"]], ")"]]]], ")"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], RowBox[List["m", "+", "n"]]], RowBox[List["(", RowBox[List[RowBox[List["q", " ", "s", " ", "k"]], "-", RowBox[List["q", " ", "s"]], "+", RowBox[List["q", " ", "r"]], "+", RowBox[List["p", " ", "s"]]]], ")"]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", ">", "0"]], "\[And]", RowBox[List["q", "\[Element]", "Integers"]], "\[And]", RowBox[List["q", ">", "0"]], "\[And]", RowBox[List["r", "\[Element]", "Integers"]], "\[And]", RowBox[List["r", ">", "0"]], "\[And]", RowBox[List["s", "\[Element]", "Integers"]], "\[And]", RowBox[List["s", ">", "0"]], "\[And]", RowBox[List["p", "<", "q"]], "\[And]", RowBox[List["r", "<", "s"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> &#914; </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mi> m </mi> <mo> + </mo> <mfrac> <mi> p </mi> <mi> q </mi> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mi> r </mi> <mi> s </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mi> q </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mi> s </mi> <mi> m </mi> </msup> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> q </mi> <mo> + </mo> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mi> q </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> - </mo> <mi> s </mi> <mo> + </mo> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> </munderover> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> q </mi> <mo> &#8290; </mo> <mi> r </mi> </mrow> <mo> + </mo> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> q </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mi> q </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#914; </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mfrac> <mi> p </mi> <mi> q </mi> </mfrac> <mo> , </mo> <mfrac> <mi> r </mi> <mi> s </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8484; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8484; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> p </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> q </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> r </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> s </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> p </mi> <mo> &lt; </mo> <mi> q </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> r </mi> <mo> &lt; </mo> <mi> s </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Beta </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <ci> r </ci> <apply> <power /> <ci> s </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> q </ci> <ci> n </ci> </apply> <apply> <power /> <ci> s </ci> <ci> m </ci> </apply> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <apply> <times /> <ci> k </ci> <ci> q </ci> </apply> </apply> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <plus /> <ci> r </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <times /> <ci> k </ci> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> m </ci> <ci> n </ci> </apply> </uplimit> <apply> <plus /> <apply> <times /> <ci> q </ci> <ci> r </ci> </apply> <apply> <times /> <ci> p </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> q </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> k </ci> <ci> q </ci> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Beta </ci> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> r </ci> <apply> <power /> <ci> s </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> m </ci> <ci> &#8484; </ci> </apply> <apply> <in /> <ci> n </ci> <ci> &#8484; </ci> </apply> <apply> <in /> <ci> p </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> q </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> r </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> s </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <lt /> <ci> p </ci> <ci> q </ci> </apply> <apply> <lt /> <ci> r </ci> <ci> s </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Beta", "[", RowBox[List[RowBox[List["m_", "+", FractionBox["p_", "q_"]]], ",", RowBox[List["n_", "+", FractionBox["r_", "s_"]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["q", "n"], " ", SuperscriptBox["s", "m"], " ", RowBox[List["Beta", "[", RowBox[List[FractionBox["p", "q"], ",", FractionBox["r", "s"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "m"], RowBox[List["(", RowBox[List[RowBox[List["q", " ", "k"]], "-", "q", "+", "p"]], ")"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "n"], RowBox[List["(", RowBox[List[RowBox[List["s", " ", "k"]], "-", "s", "+", "r"]], ")"]]]]]], ")"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], RowBox[List["m", "+", "n"]]], RowBox[List["(", RowBox[List[RowBox[List["q", " ", "s", " ", "k"]], "-", RowBox[List["q", " ", "s"]], "+", RowBox[List["q", " ", "r"]], "+", RowBox[List["p", " ", "s"]]]], ")"]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", ">", "0"]], "&&", RowBox[List["q", "\[Element]", "Integers"]], "&&", RowBox[List["q", ">", "0"]], "&&", RowBox[List["r", "\[Element]", "Integers"]], "&&", RowBox[List["r", ">", "0"]], "&&", RowBox[List["s", "\[Element]", "Integers"]], "&&", RowBox[List["s", ">", "0"]], "&&", RowBox[List["p", "<", "q"]], "&&", RowBox[List["r", "<", "s"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.