Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Beta






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Beta[a,b] > Differentiation > Fractional integro-differentiation > With respect to a





http://functions.wolfram.com/06.18.20.0008.01









  


  










Input Form





D[Beta[a, b], {a, \[Alpha]}] == FDPowerConstant[a, -1, \[Alpha]] a^(-\[Alpha] - 1) + Sum[(((-1)^j Pochhammer[1 - b, k + 1] j!)/ ((k + 1)^(j + 2) k! Gamma[j - \[Alpha] + 1])) a^(j - \[Alpha]), {j, 0, Infinity}, {k, 0, Infinity}] /; Abs[a] < 1 && Re[b] > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["a", ",", "\[Alpha]"]], "}"]]], RowBox[List["Beta", "[", RowBox[List["a", ",", "b"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["FDPowerConstant", "[", RowBox[List["a", ",", RowBox[List["-", "1"]], ",", "\[Alpha]"]], "]"]], SuperscriptBox["a", RowBox[List[RowBox[List["-", "\[Alpha]"]], "-", "1"]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "b"]], ",", RowBox[List["k", "+", "1"]]]], "]"]], RowBox[List["j", "!"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], RowBox[List["j", "+", "2"]]], RowBox[List["k", "!"]], RowBox[List["Gamma", "[", RowBox[List["j", "-", "\[Alpha]", "+", "1"]], "]"]]]]], SuperscriptBox["a", RowBox[List["j", "-", "\[Alpha]"]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "a", "]"]], "<", "1"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "b", "]"]], ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mrow> <semantics> <mi> &#914; </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> a </mi> <mi> &#945; </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mtext> </mtext> <mrow> <mrow> <mrow> <msubsup> <mi> &#8497;&#119966; </mi> <mi> exp </mi> <mrow> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;b&quot;]], &quot;)&quot;]], RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;1&quot;]]], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mrow> <mi> j </mi> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> &#945; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> a </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> a </ci> <degree> <ci> &#945; </ci> </degree> </bvar> <apply> <ci> Beta </ci> <ci> a </ci> <ci> b </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#8497;&#119966; </ci> <ci> exp </ci> </apply> <ci> &#945; </ci> </apply> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <factorial /> <ci> j </ci> </apply> <apply> <power /> <ci> a </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> j </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <factorial /> <ci> k </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <abs /> <ci> a </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <gt /> <apply> <real /> <ci> b </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["Beta", "[", RowBox[List["a_", ",", "b_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["FDPowerConstant", "[", RowBox[List["a", ",", RowBox[List["-", "1"]], ",", "\[Alpha]"]], "]"]], " ", SuperscriptBox["a", RowBox[List[RowBox[List["-", "\[Alpha]"]], "-", "1"]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "b"]], ",", RowBox[List["k", "+", "1"]]]], "]"]], " ", RowBox[List["j", "!"]]]], ")"]], " ", SuperscriptBox["a", RowBox[List["j", "-", "\[Alpha]"]]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], RowBox[List["j", "+", "2"]]], " ", RowBox[List["k", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["j", "-", "\[Alpha]", "+", "1"]], "]"]]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "a", "]"]], "<", "1"]], "&&", RowBox[List[RowBox[List["Re", "[", "b", "]"]], ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.