Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
BetaRegularized






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > BetaRegularized[z,a,b] > Series representations > Generalized power series > Expansions at generic point b==b0 > For the function itself





http://functions.wolfram.com/06.21.06.0061.01









  


  










Input Form





BetaRegularized[z, a, b] \[Proportional] BetaRegularized[z, a, Subscript[b, 0]] + ((1 - z)^Subscript[b, 0]/Gamma[a]) Gamma[a + Subscript[b, 0]] ((Gamma[Subscript[b, 0]] HypergeometricPFQRegularized[ {1 - a, Subscript[b, 0], Subscript[b, 0]}, {1 + Subscript[b, 0], 1 + Subscript[b, 0]}, 1 - z] - Hypergeometric2F1Regularized[1 - a, Subscript[b, 0], 1 + Subscript[b, 0], 1 - z] (Log[1 - z] - PolyGamma[Subscript[b, 0]] + PolyGamma[a + Subscript[b, 0]])) (b - Subscript[b, 0]) - (Gamma[Subscript[b, 0]]^2 HypergeometricPFQRegularized[ {1 - a, Subscript[b, 0], Subscript[b, 0], Subscript[b, 0]}, {1 + Subscript[b, 0], 1 + Subscript[b, 0], 1 + Subscript[b, 0]}, 1 - z] - Gamma[Subscript[b, 0]] (Log[1 - z] - PolyGamma[Subscript[b, 0]] + PolyGamma[a + Subscript[b, 0]]) HypergeometricPFQRegularized[{1 - a, Subscript[b, 0], Subscript[b, 0]}, {1 + Subscript[b, 0], 1 + Subscript[b, 0]}, 1 - z] + (1/2) (Log[1 - z]^2 + (PolyGamma[Subscript[b, 0]] - PolyGamma[a + Subscript[b, 0]]) (-2 Log[1 - z] + PolyGamma[Subscript[b, 0]] - PolyGamma[a + Subscript[b, 0]]) - PolyGamma[1, Subscript[b, 0]] + PolyGamma[1, a + Subscript[b, 0]]) Hypergeometric2F1Regularized[1 - a, Subscript[b, 0], 1 + Subscript[b, 0], 1 - z]) (b - Subscript[b, 0])^2 + \[Ellipsis]) /; (b -> Subscript[b, 0])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BetaRegularized", "[", RowBox[List["z", ",", "a", ",", "b"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["BetaRegularized", "[", RowBox[List["z", ",", "a", ",", SubscriptBox["b", "0"]]], "]"]], "+", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], SubscriptBox["b", "0"]], RowBox[List["Gamma", "[", "a", "]"]]], RowBox[List["Gamma", "[", RowBox[List["a", "+", SubscriptBox["b", "0"]]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "0"], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a"]], ",", SubscriptBox["b", "0"], ",", SubscriptBox["b", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["b", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["b", "0"]]]]], "}"]], ",", RowBox[List["1", "-", "z"]]]], "]"]]]], "-", RowBox[List[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "-", "a"]], ",", SubscriptBox["b", "0"], ",", RowBox[List["1", "+", SubscriptBox["b", "0"]]], ",", RowBox[List["1", "-", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["b", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", SubscriptBox["b", "0"]]], "]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", SubscriptBox["b", "0"]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["b", "0"], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a"]], ",", SubscriptBox["b", "0"], ",", SubscriptBox["b", "0"], ",", SubscriptBox["b", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["b", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["b", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["b", "0"]]]]], "}"]], ",", RowBox[List["1", "-", "z"]]]], "]"]]]], "-", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["b", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", SubscriptBox["b", "0"]]], "]"]]]], ")"]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a"]], ",", SubscriptBox["b", "0"], ",", SubscriptBox["b", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["b", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["b", "0"]]]]], "}"]], ",", RowBox[List["1", "-", "z"]]]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "2"], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", SubscriptBox["b", "0"], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", SubscriptBox["b", "0"]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], "+", RowBox[List["PolyGamma", "[", SubscriptBox["b", "0"], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", SubscriptBox["b", "0"]]], "]"]]]], ")"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", SubscriptBox["b", "0"]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["a", "+", SubscriptBox["b", "0"]]]]], "]"]]]], ")"]], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "-", "a"]], ",", SubscriptBox["b", "0"], ",", RowBox[List["1", "+", SubscriptBox["b", "0"]]], ",", RowBox[List["1", "-", "z"]]]], "]"]]]]]], " ", ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", SubscriptBox["b", "0"]]], ")"]], "2"]]], " ", "+", "\[Ellipsis]"]], ")"]]]]]]]], "/;", RowBox[List["(", RowBox[List["b", "\[Rule]", SubscriptBox["b", "0"]]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> I </mi> <annotation-xml encoding='MathML-Content'> <ci> BetaRegularized </ci> </annotation-xml> </semantics> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <msub> <semantics> <mi> I </mi> <annotation-xml encoding='MathML-Content'> <ci> BetaRegularized </ci> </annotation-xml> </semantics> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;a&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;0&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;0&quot;], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;z&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;a&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;0&quot;], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;z&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;a&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;0&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;0&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;0&quot;], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;z&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;a&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;0&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;0&quot;], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;z&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;a&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;0&quot;], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;z&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <msub> <mi> b </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> BetaRegularized </ci> <ci> z </ci> <ci> a </ci> <ci> b </ci> </apply> <apply> <plus /> <apply> <ci> BetaRegularized </ci> <ci> z </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <power /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> b </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BetaRegularized", "[", RowBox[List["z_", ",", "a_", ",", "b_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["BetaRegularized", "[", RowBox[List["z", ",", "a", ",", SubscriptBox["bb", "0"]]], "]"]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], SubscriptBox["bb", "0"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", SubscriptBox["bb", "0"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "0"], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a"]], ",", SubscriptBox["bb", "0"], ",", SubscriptBox["bb", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["bb", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["bb", "0"]]]]], "}"]], ",", RowBox[List["1", "-", "z"]]]], "]"]]]], "-", RowBox[List[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "-", "a"]], ",", SubscriptBox["bb", "0"], ",", RowBox[List["1", "+", SubscriptBox["bb", "0"]]], ",", RowBox[List["1", "-", "z"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["bb", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", SubscriptBox["bb", "0"]]], "]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["b", "-", SubscriptBox["bb", "0"]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["bb", "0"], "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a"]], ",", SubscriptBox["bb", "0"], ",", SubscriptBox["bb", "0"], ",", SubscriptBox["bb", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["bb", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["bb", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["bb", "0"]]]]], "}"]], ",", RowBox[List["1", "-", "z"]]]], "]"]]]], "-", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "-", RowBox[List["PolyGamma", "[", SubscriptBox["bb", "0"], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", SubscriptBox["bb", "0"]]], "]"]]]], ")"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a"]], ",", SubscriptBox["bb", "0"], ",", SubscriptBox["bb", "0"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["bb", "0"]]], ",", RowBox[List["1", "+", SubscriptBox["bb", "0"]]]]], "}"]], ",", RowBox[List["1", "-", "z"]]]], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "2"], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", SubscriptBox["bb", "0"], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", SubscriptBox["bb", "0"]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], "+", RowBox[List["PolyGamma", "[", SubscriptBox["bb", "0"], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", SubscriptBox["bb", "0"]]], "]"]]]], ")"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", SubscriptBox["bb", "0"]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["a", "+", SubscriptBox["bb", "0"]]]]], "]"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["1", "-", "a"]], ",", SubscriptBox["bb", "0"], ",", RowBox[List["1", "+", SubscriptBox["bb", "0"]]], ",", RowBox[List["1", "-", "z"]]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", SubscriptBox["bb", "0"]]], ")"]], "2"]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["Gamma", "[", "a", "]"]]]]], "/;", RowBox[List["(", RowBox[List["b", "\[Rule]", SubscriptBox["bb", "0"]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.