Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
BetaRegularized






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > BetaRegularized[z,a,b] > Differentiation > Symbolic differentiation > With respect to b





http://functions.wolfram.com/06.21.20.0009.02









  


  










Input Form





D[BetaRegularized[z, a, b], {b, n}] == KroneckerDelta[n] + ((a Sin[Pi a] Gamma[b] n! (1 - z)^b)/Pi) Sum[(-1)^(n - j) Log[1 - z]^j Gamma[a + b]^(n - j + 1) HypergeometricPFQRegularized[{Subscript[a, 1], Subscript[a, 2], \[Ellipsis], Subscript[a, n - j + 1], 1 + a}, {1 + Subscript[a, 1], 1 + Subscript[a, 2], \[Ellipsis], 1 + Subscript[a, n - j + 1]}, 1] Sum[(1/(j - i)!) HypergeometricPFQRegularized[{Subscript[c, 1], Subscript[c, 2], \[Ellipsis], Subscript[c, i + 1], 1 - a}, {1 + Subscript[c, 1], 1 + Subscript[c, 2], \[Ellipsis], 1 + Subscript[c, i + 1]}, 1 - z] (-(Gamma[b]/Log[1 - z]))^i, {i, 0, j}], {j, 0, n}] /; Subscript[a, 1] == Subscript[a, 2] == \[Ellipsis] == Subscript[a, n + 1] == a + b && Subscript[c, 1] == Subscript[c, 2] == \[Ellipsis] == Subscript[c, n + 1] == b && Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["b", ",", "n"]], "}"]]], RowBox[List["BetaRegularized", "[", RowBox[List["z", ",", "a", ",", "b"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["KroneckerDelta", "[", "n", "]"]], "+", RowBox[List[FractionBox[RowBox[List["a", " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "a"]], "]"]], RowBox[List["Gamma", "[", "b", "]"]], RowBox[List["n", "!"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "b"]]], "\[Pi]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "j"]]], SuperscriptBox[RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "j"], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["a", "+", "b"]], "]"]], RowBox[List["n", "-", "j", "+", "1"]]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["n", "-", "j", "+", "1"]]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "2"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["a", RowBox[List["n", "-", "j", "+", "1"]]]]]]], "}"]], ",", "1"]], "]"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "j"], RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["j", "-", "i"]], ")"]], "!"]]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["c", "1"], ",", SubscriptBox["c", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["c", RowBox[List["i", "+", "1"]]], ",", RowBox[List["1", "-", "a"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["c", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["c", "2"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["c", RowBox[List["i", "+", "1"]]]]]]], "}"]], ",", RowBox[List["1", "-", "z"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["Gamma", "[", "b", "]"]], RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]]], ")"]], "i"]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "\[Equal]", SubscriptBox["a", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["a", RowBox[List["n", "+", "1"]]], "\[Equal]", RowBox[List["a", "+", "b"]]]], "\[And]", RowBox[List[SubscriptBox["c", "1"], "\[Equal]", SubscriptBox["c", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["c", RowBox[List["n", "+", "1"]]], "\[Equal]", "b"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <mrow> <msub> <semantics> <mi> I </mi> <annotation-xml encoding='MathML-Content'> <ci> BetaRegularized </ci> </annotation-xml> </semantics> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> b </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mi> n </mi> </msub> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> b </mi> </msup> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mi> j </mi> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> b </mi> </mrow> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;j&quot;, &quot;+&quot;, &quot;2&quot;]], TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;j&quot;, &quot;+&quot;, &quot;1&quot;]], TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;j&quot;, &quot;+&quot;, &quot;1&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;+&quot;, &quot;b&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;a&quot;]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;j&quot;, &quot;+&quot;, &quot;1&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;;&quot;, &quot;1&quot;]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQRegularized] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> j </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> i </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mtext> </mtext> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mi> i </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mrow> <mi> i </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> c </mi> <mrow> <mi> i </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <msub> <mi> c </mi> <mrow> <mi> i </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[RowBox[List[&quot;i&quot;, &quot;+&quot;, &quot;2&quot;]], TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[RowBox[List[&quot;i&quot;, &quot;+&quot;, &quot;1&quot;]], TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;c&quot;, &quot;1&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;c&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;c&quot;, RowBox[List[&quot;i&quot;, &quot;+&quot;, &quot;1&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;a&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;c&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;c&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;c&quot;, RowBox[List[&quot;i&quot;, &quot;+&quot;, &quot;1&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;;&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, TagBox[&quot;z&quot;, HypergeometricPFQRegularized, Rule[Editable, True]]]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQRegularized] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> i </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> &#10869; </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> &#10869; </mo> <mo> &#8230; </mo> <mo> &#10869; </mo> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> &#10869; </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> &#10869; </mo> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> &#10869; </mo> <mo> &#8230; </mo> <mo> &#10869; </mo> <msub> <mi> c </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> &#10869; </mo> <mi> b </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <mrow> <msub> <semantics> <mi> I </mi> <annotation-xml encoding='MathML-Content'> <ci> BetaRegularized </ci> </annotation-xml> </semantics> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> b </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mi> n </mi> </msub> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> b </mi> </msup> </mrow> <mi> &#960; </mi> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mi> j </mi> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> b </mi> </mrow> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;j&quot;, &quot;+&quot;, &quot;2&quot;]], TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;j&quot;, &quot;+&quot;, &quot;1&quot;]], TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;j&quot;, &quot;+&quot;, &quot;1&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;+&quot;, &quot;b&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;a&quot;]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;j&quot;, &quot;+&quot;, &quot;1&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;;&quot;, &quot;1&quot;]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQRegularized] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> j </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> i </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mtext> </mtext> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mi> i </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mrow> <mi> i </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> c </mi> <mrow> <mi> i </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <msub> <mi> c </mi> <mrow> <mi> i </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[RowBox[List[&quot;i&quot;, &quot;+&quot;, &quot;2&quot;]], TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[RowBox[List[&quot;i&quot;, &quot;+&quot;, &quot;1&quot;]], TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;c&quot;, &quot;1&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;c&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;c&quot;, RowBox[List[&quot;i&quot;, &quot;+&quot;, &quot;1&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;a&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;c&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;c&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;c&quot;, RowBox[List[&quot;i&quot;, &quot;+&quot;, &quot;1&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;;&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, TagBox[&quot;z&quot;, HypergeometricPFQRegularized, Rule[Editable, True]]]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQRegularized] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> i </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> &#10869; </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> &#10869; </mo> <mo> &#8230; </mo> <mo> &#10869; </mo> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> &#10869; </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> &#10869; </mo> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> &#10869; </mo> <mo> &#8230; </mo> <mo> &#10869; </mo> <msub> <mi> c </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> &#10869; </mo> <mi> b </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["b_", ",", "n_"]], "}"]]]]], RowBox[List["BetaRegularized", "[", RowBox[List["z_", ",", "a_", ",", "b_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["KroneckerDelta", "[", "n", "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "a"]], "]"]], " ", RowBox[List["Gamma", "[", "b", "]"]], " ", RowBox[List["n", "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "b"]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "n"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "j"]]], " ", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "j"], " ", SuperscriptBox[RowBox[List["Gamma", "[", RowBox[List["a", "+", "b"]], "]"]], RowBox[List["n", "-", "j", "+", "1"]]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", SubscriptBox["aa", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["n", "-", "j", "+", "1"]]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "2"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["a", RowBox[List["n", "-", "j", "+", "1"]]]]]]], "}"]], ",", "1"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "j"], FractionBox[RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["c", "1"], ",", SubscriptBox["c", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["c", RowBox[List["i", "+", "1"]]], ",", RowBox[List["1", "-", "a"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["c", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["c", "2"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["c", RowBox[List["i", "+", "1"]]]]]]], "}"]], ",", RowBox[List["1", "-", "z"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["Gamma", "[", "b", "]"]], RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]]], ")"]], "i"]]], RowBox[List[RowBox[List["(", RowBox[List["j", "-", "i"]], ")"]], "!"]]]]]]]]]]], "\[Pi]"]]], "/;", RowBox[List[RowBox[List[SubscriptBox["aa", "1"], "\[Equal]", SubscriptBox["aa", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["a", RowBox[List["n", "+", "1"]]], "\[Equal]", RowBox[List["a", "+", "b"]]]], "&&", RowBox[List[SubscriptBox["c", "1"], "\[Equal]", SubscriptBox["c", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["c", RowBox[List["n", "+", "1"]]], "\[Equal]", "b"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.