Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
BetaRegularized






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > BetaRegularized[z1,z2,a,b] > Representations through more general functions > Through hypergeometric functions > Involving 2F1





http://functions.wolfram.com/06.22.26.0006.01









  


  










Input Form





BetaRegularized[Subscript[z, 1], Subscript[z, 2], a, b] == Csc[Pi (a + b)] Sin[b Pi] (Subscript[z, 2]^a/(-Subscript[z, 2])^a - Subscript[z, 1]^a/(-Subscript[z, 1])^a) + (1/((a + b - 1) Beta[a, b])) ((-Subscript[z, 2])^(b - 1) Subscript[z, 2]^a HypergeometricPFQ[ {1 - b, 1 - a - b}, {2 - a - b}, 1/Subscript[z, 2]] - (-Subscript[z, 1])^(b - 1) Subscript[z, 1]^a HypergeometricPFQ[ {1 - b, 1 - a - b}, {2 - a - b}, 1/Subscript[z, 1]]) /; !(Element[a + b, Integers] && a + b > 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["BetaRegularized", "[", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"], ",", "a", ",", "b"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "\[Pi]"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["z", "2"]]], ")"]], RowBox[List["-", "a"]]], " ", SubsuperscriptBox["z", "2", "a"]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["z", "1"]]], ")"]], RowBox[List["-", "a"]]], " ", SubsuperscriptBox["z", "1", "a"]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "-", "1"]], ")"]], RowBox[List["Beta", "[", RowBox[List["a", ",", "b"]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["z", "2"]]], ")"]], RowBox[List["b", "-", "1"]]], " ", SubsuperscriptBox["z", "2", "a"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "b"]], ",", RowBox[List["1", "-", "a", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List["2", "-", "a", "-", "b"]], "}"]], ",", FractionBox["1", SubscriptBox["z", "2"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["z", "1"]]], ")"]], RowBox[List["b", "-", "1"]]], " ", SubsuperscriptBox["z", "1", "a"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "b"]], ",", RowBox[List["1", "-", "a", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List["2", "-", "a", "-", "b"]], "}"]], ",", FractionBox["1", SubscriptBox["z", "1"]]]], "]"]]]]]], ")"]]]]]]]], "/;", RowBox[List["Not", "[", RowBox[List[RowBox[List["Element", "[", RowBox[List[RowBox[List["a", "+", "b"]], ",", "Integers"]], "]"]], "\[And]", RowBox[List[RowBox[List["a", "+", "b"]], ">", "0"]]]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> I </mi> <annotation-xml encoding='MathML-Content'> <ci> BetaRegularized </ci> </annotation-xml> </semantics> <mrow> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mi> a </mi> </msubsup> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mi> a </mi> </msubsup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#914; </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mi> a </mi> </msubsup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;b&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;a&quot;, &quot;-&quot;, &quot;b&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;2&quot;, &quot;-&quot;, &quot;a&quot;, &quot;-&quot;, &quot;b&quot;]], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[&quot;1&quot;, SubscriptBox[&quot;z&quot;, &quot;2&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mi> a </mi> </msubsup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;b&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;a&quot;, &quot;-&quot;, &quot;b&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;2&quot;, &quot;-&quot;, &quot;a&quot;, &quot;-&quot;, &quot;b&quot;]], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[&quot;1&quot;, SubscriptBox[&quot;z&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> &#8713; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> BetaRegularized </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> <ci> b </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <csc /> <apply> <times /> <pi /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> b </ci> <pi /> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Beta </ci> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["BetaRegularized", "[", RowBox[List[SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"], ",", "a_", ",", "b_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["zz", "2"]]], ")"]], RowBox[List["-", "a"]]], " ", SubsuperscriptBox["zz", "2", "a"]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["zz", "1"]]], ")"]], RowBox[List["-", "a"]]], " ", SubsuperscriptBox["zz", "1", "a"]]]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["zz", "2"]]], ")"]], RowBox[List["b", "-", "1"]]], " ", SubsuperscriptBox["zz", "2", "a"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "b"]], ",", RowBox[List["1", "-", "a", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List["2", "-", "a", "-", "b"]], "}"]], ",", FractionBox["1", SubscriptBox["zz", "2"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", SubscriptBox["zz", "1"]]], ")"]], RowBox[List["b", "-", "1"]]], " ", SubsuperscriptBox["zz", "1", "a"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "b"]], ",", RowBox[List["1", "-", "a", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List["2", "-", "a", "-", "b"]], "}"]], ",", FractionBox["1", SubscriptBox["zz", "1"]]]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "-", "1"]], ")"]], " ", RowBox[List["Beta", "[", RowBox[List["a", ",", "b"]], "]"]]]]]]], "/;", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["a", "+", "b"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["a", "+", "b"]], ">", "0"]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.