Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Binomial






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Binomial[n,k] > Series representations > Generalized power series > Expansions at generic point n==n0 > For the function itself





http://functions.wolfram.com/06.03.06.0011.01









  


  










Input Form





Binomial[n, k] \[Proportional] Sum[((-1)^(i + k)/k!) StirlingS1[k, i] (Subscript[n, 0] - k + 1)^i (1 + (i/(1 - k + Subscript[n, 0])) (n - Subscript[n, 0]) + (((i - 1) i)/(2 (1 - k + Subscript[n, 0])^2)) (n - Subscript[n, 0])^2 + O[(n - Subscript[n, 0])^3]), {i, 1, k}] /; Element[k, Integers] && k > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], "\[Proportional]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "k"], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["i", "+", "k"]]], RowBox[List["k", "!"]]], " ", RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "i"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["n", "0"], "-", "k", "+", "1"]], ")"]], "i"], RowBox[List["(", RowBox[List["1", "+", RowBox[List[FractionBox[RowBox[List["i", " "]], RowBox[List["1", "-", "k", "+", SubscriptBox["n", "0"]]]], RowBox[List["(", RowBox[List["n", "-", SubscriptBox["n", "0"]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["i", "-", "1"]], ")"]], " ", "i", " "]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "k", "+", SubscriptBox["n", "0"]]], ")"]], "2"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["n", "-", SubscriptBox["n", "0"]]], ")"]], "2"]]], "+", RowBox[List["O", "[", SuperscriptBox[RowBox[List["(", RowBox[List["n", "-", SubscriptBox["n", "0"]]], ")"]], "3"], "]"]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["Element", "[", RowBox[List["k", ",", "Integers"]], "]"]], "\[And]", RowBox[List["k", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8733; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> i </mi> <mo> + </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, StirlingS1] </annotation> </semantics> <mi> k </mi> <mrow> <mo> ( </mo> <mi> i </mi> <mo> ) </mo> </mrow> </msubsup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> n </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> i </mi> </msup> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mi> i </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <msub> <mi> n </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msub> <mi> n </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> i </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> i </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <msub> <mi> n </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> n </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <msub> <mi> n </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> k </mi> <mo> &#8712; </mo> <semantics> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> <annotation encoding='Mathematica'> TagBox[SuperscriptBox[&quot;\[DoubleStruckCapitalN]&quot;, &quot;+&quot;], Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> i </ci> <ci> k </ci> </apply> </apply> <apply> <ci> StirlingS1 </ci> <ci> k </ci> <ci> i </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> i </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <ci> i </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> i </ci> <cn type='integer'> -1 </cn> </apply> <ci> i </ci> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Binomial", "[", RowBox[List["n_", ",", "k_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "k"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["i", "+", "k"]]], " ", RowBox[List["StirlingS1", "[", RowBox[List["k", ",", "i"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["nn", "0"], "-", "k", "+", "1"]], ")"]], "i"], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["i", " ", RowBox[List["(", RowBox[List["n", "-", SubscriptBox["nn", "0"]]], ")"]]]], RowBox[List["1", "-", "k", "+", SubscriptBox["nn", "0"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["i", "-", "1"]], ")"]], " ", "i"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["n", "-", SubscriptBox["nn", "0"]]], ")"]], "2"]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "k", "+", SubscriptBox["nn", "0"]]], ")"]], "2"]]]], "+", SuperscriptBox[RowBox[List["O", "[", RowBox[List["n", "-", SubscriptBox["nn", "0"]]], "]"]], "3"]]], ")"]]]], RowBox[List["k", "!"]]]]], "/;", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.