Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Binomial






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Binomial[n,k] > Summation > Multiple sums





http://functions.wolfram.com/06.03.23.0054.01









  


  










Input Form





Sum[((-1)^(k + l)/(m + n - 2 k - 2 l + 1)) Binomial[n, k] Binomial[m, l] Binomial[2 n - 2 k, n] Binomial[2 m - 2 l, m], {k, 0, n/2}, {l, 0, m/2}] == KroneckerDelta[n, m] (2^(2 n)/(2 n + 1)) /; Element[n, Integers] && n >= 0 && Element[m, Integers] && m >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], FractionBox["n", "2"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["l", "=", "0"]], FractionBox["m", "2"]], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "+", "l"]]], RowBox[List["m", "+", "n", "-", RowBox[List["2", " ", "k"]], "-", RowBox[List["2", " ", "l"]], "+", "1"]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "l"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "n"]], "-", RowBox[List["2", " ", "k"]]]], ",", "n"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "m"]], "-", RowBox[List["2", " ", "l"]]]], ",", "m"]], "]"]]]]]]]], "\[Equal]", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["n", ",", "m"]], "]"]], FractionBox[SuperscriptBox["2", RowBox[List["2", "n"]]], RowBox[List[RowBox[List["2", "n"]], "+", "1"]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> l </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </munderover> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mi> l </mi> </mrow> </msup> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> l </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> l </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;l&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;n&quot;]], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;k&quot;]]]], Identity, Rule[Editable, True]]], List[TagBox[&quot;n&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> l </mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;m&quot;]], &quot;-&quot;, RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;l&quot;]]]], Identity, Rule[Editable, True]]], List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> n </mi> <mo> , </mo> <mi> m </mi> </mrow> </msub> <mo> &#8290; </mo> <mfrac> <msup> <mn> 2 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msup> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> l </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <ci> l </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> l </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> l </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> <ci> n </ci> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> l </ci> </apply> </apply> </apply> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <ci> n </ci> <ci> m </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> m </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "0"]], FractionBox["n_", "2"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["l_", "=", "0"]], FractionBox["m_", "2"]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k_", "+", "l_"]]], " ", RowBox[List["Binomial", "[", RowBox[List["n_", ",", "k_"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["m_", ",", "l_"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "n_"]], "-", RowBox[List["2", " ", "k_"]]]], ",", "n_"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "m_"]], "-", RowBox[List["2", " ", "l_"]]]], ",", "m_"]], "]"]]]], RowBox[List["m_", "+", "n_", "-", RowBox[List["2", " ", "k_"]], "-", RowBox[List["2", " ", "l_"]], "+", "1"]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["n", ",", "m"]], "]"]], " ", SuperscriptBox["2", RowBox[List["2", " ", "n"]]]]], RowBox[List[RowBox[List["2", " ", "n"]], "+", "1"]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998- Wolfram Research, Inc.