Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Binomial






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Binomial[n,k] > Summation > Multiple sums





http://functions.wolfram.com/06.03.23.0055.01









  


  










Input Form





Sum[Binomial[2 k - 1, j]/(2^(2 k - 1) (2 j - 1) (j - n - k + 1/2)), {k, 1, Infinity}, {j, 0, Infinity}] == (2/n) (HarmonicNumber[2 n] - HarmonicNumber[n]/2) /; Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "k"]], "-", "1"]], ",", "j"]], "]"]], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "k"]], "-", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j"]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["j", "-", "n", "-", "k", "+", FractionBox["1", "2"]]], ")"]]]]]]]]], "\[Equal]", RowBox[List[FractionBox["2", "n"], " ", RowBox[List["(", RowBox[List[RowBox[List["HarmonicNumber", "[", RowBox[List["2", " ", "n"]], "]"]], "-", FractionBox[RowBox[List["HarmonicNumber", "[", "n", "]"]], "2"]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;k&quot;]], &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> j </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 2 </mn> <mi> n </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msub> <mo> - </mo> <mfrac> <msub> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mi> n </mi> </msub> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> HarmonicNumber </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> HarmonicNumber </ci> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "1"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j_", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "k_"]], "-", "1"]], ",", "j_"]], "]"]], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "k_"]], "-", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "j_"]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["j_", "-", "n_", "-", "k_", "+", FractionBox["1", "2"]]], ")"]]]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["HarmonicNumber", "[", RowBox[List["2", " ", "n"]], "]"]], "-", FractionBox[RowBox[List["HarmonicNumber", "[", "n", "]"]], "2"]]], ")"]]]], "n"], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










References





R. Lyons, P. Paule, A. Riese, "A Computer Proof of a Series Evaluation in Terms of Harmonic Numbers", Applicable Algebra in Engineering, Communication and Computing , v. 13, pp. 327-333 (2002)










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998-2014 Wolfram Research, Inc.