Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











CatalanNumber






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > CatalanNumber[n] > Series representations > Generalized power series > Expansions at z=-n-1/2





http://functions.wolfram.com/06.41.06.0009.01









  


  










Input Form





CatalanNumber[z] \[Proportional] ((-1)^n 2^(-1 - 2 n))/(Sqrt[Pi] Gamma[3/2 - n] n! (z + 1/2 + n)) + ((-1)^n 2^(-1 - 2 n) (Log[4] - PolyGamma[3/2 - n] + PolyGamma[1 + n]))/ (Sqrt[Pi] Gamma[3/2 - n] n!) + (((-1)^n 4^(-1 - n))/(3 Sqrt[Pi] Gamma[3/2 - n] n!)) (Pi^2 + 3 Log[4]^2 + 3 PolyGamma[3/2 - n]^2 - 6 PolyGamma[3/2 - n] (Log[4] + PolyGamma[1 + n]) + 3 PolyGamma[1 + n] (Log[16] + PolyGamma[1 + n]) - 3 PolyGamma[1, 3/2 - n] - 3 PolyGamma[1, 1 + n]) (z + 1/2 + n) + (((-1)^n 4^(-1 - n))/(3 Sqrt[Pi] Gamma[3/2 - n] n!)) (Pi^2 Log[4] + Log[4]^3 - PolyGamma[3/2 - n]^3 + Log[64] PolyGamma[1 + n]^2 + PolyGamma[1 + n]^3 + 3 PolyGamma[3/2 - n]^2 (Log[4] + PolyGamma[1 + n]) + PolyGamma[1 + n] (Pi^2 + 3 Log[4]^2 - 3 PolyGamma[1, 3/2 - n] - 3 PolyGamma[1, 1 + n]) - PolyGamma[3/2 - n] (Pi^2 + 3 Log[4]^2 + 3 PolyGamma[1 + n] (Log[16] + PolyGamma[1 + n]) - 3 PolyGamma[1, 3/2 - n] - 3 PolyGamma[1, 1 + n]) - 3 Log[4] (PolyGamma[1, 3/2 - n] + PolyGamma[1, 1 + n]) - PolyGamma[2, 3/2 - n] + PolyGamma[2, 1 + n]) (z + 1/2 + n)^2 + \[Ellipsis] /; (z -> -(1/2) - n) && Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["CatalanNumber", "[", "z", "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "n"]]]]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], " ", RowBox[List["n", "!"]], RowBox[List["(", RowBox[List["z", "+", FractionBox["1", "2"], "+", "n"]], ")"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "4", "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]]]], ")"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], " ", RowBox[List["n", "!"]]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["4", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]]]], RowBox[List["3", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], " ", RowBox[List["n", "!"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "4", "]"]], "2"]]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], "2"]]], "-", RowBox[List["6", " ", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "4", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]]]], ")"]]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "16", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]]]], ")"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "-", "n"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "n"]]]], "]"]]]]]], ")"]], RowBox[List["(", RowBox[List["z", "+", FractionBox["1", "2"], "+", "n"]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["4", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]]]], RowBox[List["3", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], " ", RowBox[List["n", "!"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", "4", "]"]]]], "+", SuperscriptBox[RowBox[List["Log", "[", "4", "]"]], "3"], "-", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], "3"], "+", RowBox[List[RowBox[List["Log", "[", "64", "]"]], " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]], "2"]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]], "3"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "4", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "4", "]"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "-", "n"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "n"]]]], "]"]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "4", "]"]], "2"]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "16", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]]]], ")"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "-", "n"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "n"]]]], "]"]]]]]], ")"]]]], "-", RowBox[List["3", " ", RowBox[List["Log", "[", "4", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "-", "n"]]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "n"]]]], "]"]]]], ")"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List[FractionBox["3", "2"], "-", "n"]]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["1", "+", "n"]]]], "]"]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", FractionBox["1", "2"], "+", "n"]], ")"]], "2"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "->", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]]], ")"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, CatalanNumber] </annotation> </semantics> <mi> z </mi> </msub> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> z </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 4 </mn> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 16 </mn> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> z </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 4 </mn> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> + </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> + </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 64 </mn> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 16 </mn> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> z </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> CatalanNumber </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <plus /> <ci> n </ci> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <ln /> <cn type='integer'> 16 </cn> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <ln /> <cn type='integer'> 64 </cn> </apply> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <ln /> <cn type='integer'> 16 </cn> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["CatalanNumber", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "n"]]]]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List["z", "+", FractionBox["1", "2"], "+", "n"]], ")"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "4", "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]]]], ")"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], " ", RowBox[List["n", "!"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["4", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "4", "]"]], "2"]]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], "2"]]], "-", RowBox[List["6", " ", RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "4", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]]]], ")"]]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "16", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]]]], ")"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "-", "n"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "n"]]]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "+", FractionBox["1", "2"], "+", "n"]], ")"]]]], RowBox[List["3", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], " ", RowBox[List["n", "!"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["4", RowBox[List[RowBox[List["-", "1"]], "-", "n"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", "4", "]"]]]], "+", SuperscriptBox[RowBox[List["Log", "[", "4", "]"]], "3"], "-", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], "3"], "+", RowBox[List[RowBox[List["Log", "[", "64", "]"]], " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]], "2"]]], "+", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]], "3"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "4", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "4", "]"]], "2"]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "-", "n"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "n"]]]], "]"]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "4", "]"]], "2"]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "16", "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "n"]], "]"]]]], ")"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "-", "n"]]]], "]"]]]], "-", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "n"]]]], "]"]]]]]], ")"]]]], "-", RowBox[List["3", " ", RowBox[List["Log", "[", "4", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List[FractionBox["3", "2"], "-", "n"]]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "n"]]]], "]"]]]], ")"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List[FractionBox["3", "2"], "-", "n"]]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["2", ",", RowBox[List["1", "+", "n"]]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", FractionBox["1", "2"], "+", "n"]], ")"]], "2"]]], RowBox[List["3", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], " ", RowBox[List["n", "!"]]]]], "+", "\[Ellipsis]"]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]]], ")"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.