Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











CatalanNumber






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > CatalanNumber[n] > Series representations > Generalized power series > Expansions at z=-n-1/2





http://functions.wolfram.com/06.41.06.0010.01









  


  










Input Form





CatalanNumber[z] == (((-1)^n 2^(-1 - 2 n))/(Subscript[e, 0] Sqrt[Pi] (z + n + 1/2))) Sum[(k + 1) Sum[(((-1)^r Binomial[k, r])/(1 + r)) Subscript[p, r, k] (z + n + 1/2)^k, {r, 0, k}], {k, 0, Infinity}] /; Subscript[a, k] == (Pi^k I^k (1 + (-1)^k))/(2 (k + 1)!) && Subscript[b, k] == ((-1)^k Log[4]^k)/k! && Subscript[c, k] == Derivative[k][Gamma][3/2 - n]/k! && Subscript[d, k] == ((-1)^k Derivative[k][Gamma][1 + n])/k! && Subscript[e, k] == Sum[Subscript[a, u - v] Subscript[b, v - i] Subscript[c, i] Subscript[d, k - u], {u, 0, k}, {v, 0, u}, {i, 0, v}] && Subscript[p, j, 0] == 1 && Subscript[p, j, k] == (1/(Subscript[e, 0] k)) Sum[(j m - k + m) Subscript[e, m] Subscript[p, j, k - m], {m, 1, k}] && Element[k, Integers] && k >= 0 && Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["CatalanNumber", "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "n"]]]]]]], RowBox[List[SubscriptBox["e", "0"], SqrtBox["\[Pi]"], RowBox[List["(", RowBox[List["z", "+", "n", "+", FractionBox["1", "2"]]], ")"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], "k"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "r"]], "]"]]]], RowBox[List["1", "+", "r"]]], SubscriptBox["p", RowBox[List["r", ",", "k"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "n", "+", FractionBox["1", "2"]]], ")"]], "k"]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "k"], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "k"], SuperscriptBox["\[ImaginaryI]", "k"], RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], ")"]]]], RowBox[List["2", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]]]]]]], "\[And]", RowBox[List[SubscriptBox["b", "k"], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], SuperscriptBox[RowBox[List["Log", "[", "4", "]"]], "k"]]], RowBox[List["k", "!"]]]]], "\[And]", RowBox[List[SubscriptBox["c", "k"], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], RowBox[List["k", "!"]]]]], "\[And]", RowBox[List[SubscriptBox["d", "k"], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["1", "+", "n"]], "]"]]]], RowBox[List["k", "!"]]]]], "\[And]", RowBox[List[SubscriptBox["e", "k"], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["v", "=", "0"]], "u"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "v"], RowBox[List[SubscriptBox["a", RowBox[List["u", "-", "v"]]], SubscriptBox["b", RowBox[List["v", "-", "i"]]], SubscriptBox["c", "i"], SubscriptBox["d", RowBox[List["k", "-", "u"]]]]]]]]]]]]], "\[And]", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "0"]]], "\[Equal]", "1"]], "\[And]", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List[SubscriptBox["e", "0"], " ", "k"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "k"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["j", " ", "m"]], "-", "k", "+", "m"]], ")"]], SubscriptBox["e", "m"], SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "-", "m"]]]]]]]]]]]]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, CatalanNumber] </annotation> </semantics> <mi> z </mi> </msub> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <msub> <mi> e </mi> <mn> 0 </mn> </msub> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> z </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> r </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> r </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[&quot;r&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mrow> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <msub> <mi> p </mi> <mrow> <mi> r </mi> <mo> , </mo> <mi> k </mi> </mrow> </msub> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> z </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> &#63449; </mo> <mfrac> <mrow> <msup> <mi> &#960; </mi> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8520; </mi> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> &#63449; </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mi> k </mi> </msup> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> c </mi> <mi> k </mi> </msub> <mo> &#63449; </mo> <mfrac> <mrow> <msup> <mi> &#915; </mi> <semantics> <mrow> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;k&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> d </mi> <mi> k </mi> </msub> <mo> &#63449; </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> &#915; </mi> <semantics> <mrow> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;k&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> e </mi> <mi> k </mi> </msub> <mo> &#63449; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> u </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> v </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> u </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> v </mi> </munderover> <mrow> <msub> <mi> a </mi> <mrow> <mi> u </mi> <mo> - </mo> <mi> v </mi> </mrow> </msub> <mo> &#8290; </mo> <msub> <mi> b </mi> <mrow> <mi> v </mi> <mo> - </mo> <mi> i </mi> </mrow> </msub> <mo> &#8290; </mo> <msub> <mi> c </mi> <mi> i </mi> </msub> <mo> &#8290; </mo> <msub> <mi> d </mi> <mrow> <mi> k </mi> <mo> - </mo> <mi> u </mi> </mrow> </msub> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mn> 0 </mn> </mrow> </msub> <mo> &#63449; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> </msub> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msub> <mi> e </mi> <mn> 0 </mn> </msub> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> j </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> e </mi> <mi> m </mi> </msub> <mo> &#8290; </mo> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> m </mi> </mrow> </mrow> </msub> </mrow> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> k </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> z </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> CatalanNumber </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> n </ci> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <sum /> <bvar> <ci> r </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> r </ci> </apply> <apply> <power /> <apply> <plus /> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> r </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <ci> n </ci> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <power /> <pi /> <ci> k </ci> </apply> <apply> <power /> <imaginaryi /> <ci> k </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <ci> D </ci> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <list> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <ci> k </ci> </list> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> D </ci> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <list> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </list> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> e </ci> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> v </ci> </uplimit> <apply> <sum /> <bvar> <ci> v </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> u </ci> </uplimit> <apply> <sum /> <bvar> <ci> u </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <plus /> <ci> u </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> i </ci> </apply> <apply> <ci> Subscript </ci> <ci> d </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> e </ci> <cn type='integer'> 0 </cn> </apply> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <ci> j </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> <apply> <ci> Subscript </ci> <ci> e </ci> <ci> m </ci> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> n </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <plus /> <ci> n </ci> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["CatalanNumber", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "n"]]]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "0"]], "k"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "r"]], "]"]]]], ")"]], " ", SubscriptBox["p", RowBox[List["r", ",", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "n", "+", FractionBox["1", "2"]]], ")"]], "k"]]], RowBox[List["1", "+", "r"]]]]]]]]]]], RowBox[List[SubscriptBox["e", "0"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["z", "+", "n", "+", FractionBox["1", "2"]]], ")"]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "k"], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "k"], " ", SuperscriptBox["\[ImaginaryI]", "k"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], ")"]]]], RowBox[List["2", " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]]]]]]], "&&", RowBox[List[SubscriptBox["b", "k"], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox[RowBox[List["Log", "[", "4", "]"]], "k"]]], RowBox[List["k", "!"]]]]], "&&", RowBox[List[SubscriptBox["c", "k"], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[FractionBox["3", "2"], "-", "n"]], "]"]], RowBox[List["k", "!"]]]]], "&&", RowBox[List[SubscriptBox["d", "k"], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["1", "+", "n"]], "]"]]]], RowBox[List["k", "!"]]]]], "&&", RowBox[List[SubscriptBox["e", "k"], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["v", "=", "0"]], "u"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "v"], RowBox[List[SubscriptBox["a", RowBox[List["u", "-", "v"]]], " ", SubscriptBox["b", RowBox[List["v", "-", "i"]]], " ", SubscriptBox["c", "i"], " ", SubscriptBox["d", RowBox[List["k", "-", "u"]]]]]]]]]]]]], "&&", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "0"]]], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], "\[Equal]", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "k"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["j", " ", "m"]], "-", "k", "+", "m"]], ")"]], " ", SubscriptBox["e", "m"], " ", SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "-", "m"]]]]]]]]], RowBox[List[SubscriptBox["e", "0"], " ", "k"]]]]], "&&", RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", "\[GreaterEqual]", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.