Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











CosIntegral






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > CosIntegral[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving exponential function and a power function > Involving exp and power





http://functions.wolfram.com/06.38.21.0019.01









  


  










Input Form





Integrate[z^3 E^(b z) CosIntegral[a z], z] == (1/b^4) (E^(b z) (-6 + 6 b z - 3 b^2 z^2 + b^3 z^3) CosIntegral[a z] + 3 (ExpIntegralEi[((-I) a + b) z] + ExpIntegralEi[(I a + b) z]) - (1/(a^2 + b^2)^3) (b E^(b z) (b (b^4 (11 - 5 b z + b^2 z^2) + 2 a^2 b^2 (3 - 3 b z + b^2 z^2) + a^4 (3 - b z + b^2 z^2)) Cos[a z] + a (b^4 (18 - 7 b z + b^2 z^2) + 2 a^2 b^2 (8 - 5 b z + b^2 z^2) + a^4 (6 - 3 b z + b^2 z^2)) Sin[a z])))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", "z"]]], " ", RowBox[List["CosIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", SuperscriptBox["b", "4"]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6"]], "+", RowBox[List["6", " ", "b", " ", "z"]], "-", RowBox[List["3", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[SuperscriptBox["b", "3"], " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["CosIntegral", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "3"]], RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "4"], " ", RowBox[List["(", RowBox[List["11", "-", RowBox[List["5", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["3", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "4"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "4"], " ", RowBox[List["(", RowBox[List["18", "-", RowBox[List["7", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["8", "-", RowBox[List["5", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "4"], " ", RowBox[List["(", RowBox[List["6", "-", RowBox[List["3", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> Ci </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> b </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Ci </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 11 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 18 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <ci> CosIntegral </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <ci> b </ci> <ci> z </ci> </apply> <cn type='integer'> -6 </cn> </apply> <apply> <ci> CosIntegral </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <imaginaryi /> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <ci> b </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 11 </cn> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <ci> b </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7 </cn> <ci> b </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 18 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b_", " ", "z_"]]], " ", RowBox[List["CosIntegral", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6"]], "+", RowBox[List["6", " ", "b", " ", "z"]], "-", RowBox[List["3", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[SuperscriptBox["b", "3"], " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["CosIntegral", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]]]], ")"]]]], "-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "4"], " ", RowBox[List["(", RowBox[List["11", "-", RowBox[List["5", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["3", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "4"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "4"], " ", RowBox[List["(", RowBox[List["18", "-", RowBox[List["7", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["8", "-", RowBox[List["5", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "4"], " ", RowBox[List["(", RowBox[List["6", "-", RowBox[List["3", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "3"]]]], SuperscriptBox["b", "4"]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.