Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











CosIntegral






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > CosIntegral[z] > Integration > Indefinite integration > Involving functions of the direct function and elementary functions > Involving elementary functions of the direct function and elementary functions > Involving products of the direct function and a power function





http://functions.wolfram.com/06.38.21.0058.01









  


  










Input Form





Integrate[z^3 CosIntegral[a z] CosIntegral[b z], z] == -(a^2 b^2 Cos[b z] ((3 a^4 - 14 a^2 b^2 + 3 b^4) Cos[a z] + a (-3 a^4 + 2 a^2 b^2 + b^4) z Sin[a z]) + (a - b)^2 (a + b)^2 (3 b^4 (-2 + a^2 z^2) Cos[a z] CosIntegral[b z] + 3 (a^4 + b^4) (CosIntegral[(a - b) z] + CosIntegral[(a + b) z]) + a b^4 z (-6 + a^2 z^2) CosIntegral[b z] Sin[a z]) - a b ((-b^2) (a^5 + 2 a^3 b^2 - 3 a b^4) z Cos[a z] + (-2 (a^2 + b^2) (3 a^4 - 8 a^2 b^2 + 3 b^4) + a^2 b^2 (a^2 - b^2)^2 z^2) Sin[a z]) Sin[b z] + a^4 (a - b)^2 (a + b)^2 CosIntegral[a z] (3 (-2 + b^2 z^2) Cos[b z] - b^4 z^4 CosIntegral[b z] + b z (-6 + b^2 z^2) Sin[b z]))/(4 a^4 (a - b)^2 b^4 (a + b)^2)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "3"], " ", RowBox[List["CosIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["CosIntegral", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", RowBox[List["Cos", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["a", "4"]]], "-", RowBox[List["14", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["3", " ", SuperscriptBox["b", "4"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", SuperscriptBox["a", "4"]]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"]]], "+", SuperscriptBox["b", "4"]]], ")"]], " ", "z", " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["b", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["CosIntegral", "[", RowBox[List["b", " ", "z"]], "]"]]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "+", SuperscriptBox["b", "4"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["CosIntegral", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "z"]], "]"]], "+", RowBox[List["CosIntegral", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "z"]], "]"]]]], ")"]]]], "+", RowBox[List["a", " ", SuperscriptBox["b", "4"], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["CosIntegral", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]]]], "-", RowBox[List["a", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "5"], "+", RowBox[List["2", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "2"]]], "-", RowBox[List["3", " ", "a", " ", SuperscriptBox["b", "4"]]]]], ")"]], " ", "z", " ", RowBox[List["Cos", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["a", "4"]]], "-", RowBox[List["8", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["3", " ", SuperscriptBox["b", "4"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], "2"], " ", RowBox[List["CosIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["b", " ", "z"]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "4"], " ", SuperscriptBox["z", "4"], " ", RowBox[List["CosIntegral", "[", RowBox[List["b", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], "/", RowBox[List["(", RowBox[List["4", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], "2"], " ", SuperscriptBox["b", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], "2"]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> Ci </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Ci </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> Ci </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mi> Ci </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 14 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 5 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Ci </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Ci </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Ci </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> Ci </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> CosIntegral </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <ci> CosIntegral </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> CosIntegral </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <ci> CosIntegral </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -6 </cn> </apply> <apply> <sin /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <cos /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <cos /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 14 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -3 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> <ci> z </ci> <apply> <sin /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 5 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <ci> a </ci> </apply> </apply> </apply> <ci> z </ci> <apply> <cos /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <cos /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <ci> CosIntegral </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -6 </cn> </apply> <apply> <ci> CosIntegral </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> CosIntegral </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> CosIntegral </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "3"], " ", RowBox[List["CosIntegral", "[", RowBox[List["a_", " ", "z_"]], "]"]], " ", RowBox[List["CosIntegral", "[", RowBox[List["b_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", RowBox[List["Cos", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["a", "4"]]], "-", RowBox[List["14", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["3", " ", SuperscriptBox["b", "4"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", SuperscriptBox["a", "4"]]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"]]], "+", SuperscriptBox["b", "4"]]], ")"]], " ", "z", " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["b", "4"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["CosIntegral", "[", RowBox[List["b", " ", "z"]], "]"]]]], "+", RowBox[List["3", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "+", SuperscriptBox["b", "4"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["CosIntegral", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "z"]], "]"]], "+", RowBox[List["CosIntegral", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "z"]], "]"]]]], ")"]]]], "+", RowBox[List["a", " ", SuperscriptBox["b", "4"], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["CosIntegral", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]]]], "-", RowBox[List["a", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "5"], "+", RowBox[List["2", " ", SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "2"]]], "-", RowBox[List["3", " ", "a", " ", SuperscriptBox["b", "4"]]]]], ")"]], " ", "z", " ", RowBox[List["Cos", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SuperscriptBox["a", "4"]]], "-", RowBox[List["8", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["3", " ", SuperscriptBox["b", "4"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], "2"], " ", RowBox[List["CosIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["b", " ", "z"]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "4"], " ", SuperscriptBox["z", "4"], " ", RowBox[List["CosIntegral", "[", RowBox[List["b", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]]]], RowBox[List["4", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], "2"], " ", SuperscriptBox["b", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.