html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 CoshIntegral

 http://functions.wolfram.com/06.40.21.0071.01

 Input Form

 Integrate[z SinIntegral[b z] CoshIntegral[a z], z] == (1/(8 a^2 b^2)) (((-a) b (-1 + E^(2 a z)) (1 + E^(2 I b z)) + I (a - b) (a + b) E^((a + I b) z) (ExpIntegralEi[(a - I b) z] + ExpIntegralEi[(-(a + I b)) z] - ExpIntegralEi[(a + I b) z] - ExpIntegralEi[(-a) z + I b z]) + 2 E^((a + I b) z) (I a^2 CoshIntegral[a z] (Gamma[2, (-I) b z] - Gamma[2, I b z]) + b^2 (2 a^2 z^2 CoshIntegral[a z] + Gamma[2, (-a) z] + Gamma[2, a z]) SinIntegral[b z]))/E^((a + I b) z))

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List["z", " ", RowBox[List["SinIntegral", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["CoshIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["8", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]]]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "a", " ", "z"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "z"]], "]"]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]]]], " ", "z"]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "z"]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]]], "]"]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", RowBox[List["CoshIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "z"]]]], "]"]], "-", RowBox[List["Gamma", "[", RowBox[List["2", ",", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"], " ", RowBox[List["CoshIntegral", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List["Gamma", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", "a"]], " ", "z"]]]], "]"]], "+", RowBox[List["Gamma", "[", RowBox[List["2", ",", RowBox[List["a", " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["SinIntegral", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]

 MathML Form

 z Si ( b z ) Chi ( a z ) z 1 8 a 2 b 2 ( - ( a + b ) z ( - a b ( - 1 + 2 a z ) ( 1 + 2 b z ) + ( a - b ) ( a + b ) ( a + b ) z ( Ei ( - ( a + b ) z ) - Ei ( ( a + b ) z ) + Ei ( ( a - b ) z ) - Ei ( b z - a z ) ) + 2 ( a + b ) z ( Chi ( a z ) ( Γ ( 2 , - b z ) - Γ ( 2 , b z ) ) a 2 + b 2 ( 2 a 2 Chi ( a z ) z 2 + Γ ( 2 , - a z ) + Γ ( 2 , a z ) ) Si ( b z ) ) ) ) z z SinIntegral b z CoshIntegral a z 1 8 a 2 b 2 -1 -1 a b z -1 a b -1 2 a z 1 2 b z a -1 b a b a b z ExpIntegralEi -1 a b z -1 ExpIntegralEi a b z ExpIntegralEi a -1 b z -1 ExpIntegralEi b z -1 a z 2 a b z CoshIntegral a z Gamma 2 -1 b z -1 Gamma 2 b z a 2 b 2 2 a 2 CoshIntegral a z z 2 Gamma 2 -1 a z Gamma 2 a z SinIntegral b z [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["z_", " ", RowBox[List["SinIntegral", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["CoshIntegral", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]]]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "a", " ", "z"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "z"]], "]"]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]]]], " ", "z"]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "z"]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]]], "]"]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", RowBox[List["CoshIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "z"]]]], "]"]], "-", RowBox[List["Gamma", "[", RowBox[List["2", ",", RowBox[List["\[ImaginaryI]", " ", "b", " ", "z"]]]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["z", "2"], " ", RowBox[List["CoshIntegral", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List["Gamma", "[", RowBox[List["2", ",", RowBox[List[RowBox[List["-", "a"]], " ", "z"]]]], "]"]], "+", RowBox[List["Gamma", "[", RowBox[List["2", ",", RowBox[List["a", " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["SinIntegral", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["8", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29