Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











CoshIntegral






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > CoshIntegral[z] > Integration > Indefinite integration > Involving direct function and Gamma-, Beta-, Erf-type functions > Involving exponential integral-type functions and a power function > Involving Shi and power





http://functions.wolfram.com/06.40.21.0081.01









  


  










Input Form





Integrate[z^2 SinhIntegral[b z] CoshIntegral[a z], z] == (1/12) ((1/b^3) (2 (ExpIntegralEi[(a - b) z] + ExpIntegralEi[(-a + b) z] + ExpIntegralEi[(-(a + b)) z] + ExpIntegralEi[(a + b) z])) - (1/b^3) (2 CoshIntegral[a z] (Gamma[3, (-b) z] + Gamma[3, b z])) - (-8 b Cosh[a z] Cosh[b z] + (a - b) b (a + b) z^2 (ExpIntegralE[-1, (a - b) z] + ExpIntegralE[-1, (-a + b) z] + ExpIntegralE[-1, (-(a + b)) z] + ExpIntegralE[-1, (a + b) z]) + 8 a Sinh[a z] Sinh[b z])/((a - b) b^2 (a + b)) + 4 z^3 CoshIntegral[a z] SinhIntegral[b z] - (1/a^3) (2 (ExpIntegralEi[(a - b) z] + ExpIntegralEi[(-a + b) z] - ExpIntegralEi[(-(a + b)) z] - ExpIntegralEi[(a + b) z] + (1/(a^2 - b^2)^2) (2 a (Cosh[b z] (2 b (-2 a^2 + b^2) Cosh[a z] + a (a - b) b (a + b) z Sinh[a z]) - a (a (a - b) (a + b) z Cosh[a z] + (-3 a^2 + b^2) Sinh[a z]) Sinh[b z])) + Gamma[3, (-a) z] SinhIntegral[b z] - Gamma[3, a z] SinhIntegral[b z])))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["SinhIntegral", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["CoshIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "12"], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", SuperscriptBox["b", "3"]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "z"]], "]"]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]], " ", "z"]], "]"]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "z"]], "]"]]]], ")"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", SuperscriptBox["b", "3"]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["CoshIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["3", ",", RowBox[List[RowBox[List["-", "b"]], " ", "z"]]]], "]"]], "+", RowBox[List["Gamma", "[", RowBox[List["3", ",", RowBox[List["b", " ", "z"]]]], "]"]]]], ")"]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", "b", " ", RowBox[List["Cosh", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "b", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["-", "1"]], ",", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "z"]]]], "]"]], "+", RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["-", "1"]], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", "z"]]]], "]"]], "+", RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["-", "1"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]], " ", "z"]]]], "]"]], "+", RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["-", "1"]], ",", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "z"]]]], "]"]]]], ")"]]]], "+", RowBox[List["8", " ", "a", " ", RowBox[List["Sinh", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]], ")"]]]], "+", RowBox[List["4", " ", SuperscriptBox["z", "3"], " ", RowBox[List["CoshIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["b", " ", "z"]], "]"]]]], "-", RowBox[List[FractionBox["1", SuperscriptBox["a", "3"]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "z"]], "]"]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]], " ", "z"]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "z"]], "]"]], "+", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], "2"]], RowBox[List["(", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "b", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "z", " ", RowBox[List["Sinh", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]]]], "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "z", " ", RowBox[List["Cosh", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]], ")"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["3", ",", RowBox[List[RowBox[List["-", "a"]], " ", "z"]]]], "]"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["b", " ", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["3", ",", RowBox[List["a", " ", "z"]]]], "]"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> Shi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Chi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 12 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> Chi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Shi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mi> b </mi> <mn> 3 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 2 </mn> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Shi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> , </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Shi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> Chi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> , </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mi> b </mi> <mn> 3 </mn> </msup> </mfrac> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <semantics> <mi> E </mi> <annotation encoding='Mathematica'> TagBox[&quot;E&quot;, ExpIntegralE] </annotation> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> E </mi> <annotation encoding='Mathematica'> TagBox[&quot;E&quot;, ExpIntegralE] </annotation> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> E </mi> <annotation encoding='Mathematica'> TagBox[&quot;E&quot;, ExpIntegralE] </annotation> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> E </mi> <annotation encoding='Mathematica'> TagBox[&quot;E&quot;, ExpIntegralE] </annotation> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> SinhIntegral </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <ci> CoshIntegral </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 12 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> CoshIntegral </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <ci> SinhIntegral </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <apply> <cosh /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <ci> b </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <ci> z </ci> <apply> <sinh /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <ci> z </ci> <apply> <cosh /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <cn type='integer'> 3 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> SinhIntegral </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Gamma </ci> <cn type='integer'> 3 </cn> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <ci> SinhIntegral </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> CoshIntegral </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <ci> Gamma </ci> <cn type='integer'> 3 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> Gamma </ci> <cn type='integer'> 3 </cn> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <ci> b </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <plus /> <apply> <ci> ExpIntegralE </ci> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> ExpIntegralE </ci> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> ExpIntegralE </ci> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> ExpIntegralE </ci> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> b </ci> <apply> <cosh /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> a </ci> <apply> <sinh /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "2"], " ", RowBox[List["SinhIntegral", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["CoshIntegral", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "12"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "z"]], "]"]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]], " ", "z"]], "]"]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "z"]], "]"]]]], ")"]]]], SuperscriptBox["b", "3"]], "-", FractionBox[RowBox[List["2", " ", RowBox[List["CoshIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["3", ",", RowBox[List[RowBox[List["-", "b"]], " ", "z"]]]], "]"]], "+", RowBox[List["Gamma", "[", RowBox[List["3", ",", RowBox[List["b", " ", "z"]]]], "]"]]]], ")"]]]], SuperscriptBox["b", "3"]], "-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "8"]], " ", "b", " ", RowBox[List["Cosh", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "b", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["-", "1"]], ",", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "z"]]]], "]"]], "+", RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["-", "1"]], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", "z"]]]], "]"]], "+", RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["-", "1"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]], " ", "z"]]]], "]"]], "+", RowBox[List["ExpIntegralE", "[", RowBox[List[RowBox[List["-", "1"]], ",", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "z"]]]], "]"]]]], ")"]]]], "+", RowBox[List["8", " ", "a", " ", RowBox[List["Sinh", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]]], "+", RowBox[List["4", " ", SuperscriptBox["z", "3"], " ", RowBox[List["CoshIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["b", " ", "z"]], "]"]]]], "-", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "z"]], "]"]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]]]], " ", "z"]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "z"]], "]"]], "+", FractionBox[RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", "b", " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "z", " ", RowBox[List["Sinh", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]]]], "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "z", " ", RowBox[List["Cosh", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], "2"]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["3", ",", RowBox[List[RowBox[List["-", "a"]], " ", "z"]]]], "]"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["b", " ", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["3", ",", RowBox[List["a", " ", "z"]]]], "]"]], " ", RowBox[List["SinhIntegral", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]], SuperscriptBox["a", "3"]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.