Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Erf






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Erf[z1,z2] > Series representations > Generalized power series > Expansions at {z1,z2}=={0,0}





http://functions.wolfram.com/06.26.06.0003.01









  


  










Input Form





Erf[Subscript[z, 1], Subscript[z, 2]] == ((2 Subscript[z, 2])/Sqrt[Pi]) Hypergeometric1F1[1/2, 3/2, -Subscript[z, 2]^2] - ((2 Subscript[z, 1])/Sqrt[Pi]) Hypergeometric1F1[1/2, 3/2, -Subscript[z, 1]^2]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Erf", "[", RowBox[List[SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["2", " ", SubscriptBox["z", "2"]]], SqrtBox["\[Pi]"]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List[FractionBox["1", "2"], ",", FractionBox["3", "2"], ",", RowBox[List["-", SubsuperscriptBox["z", "2", "2"]]]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List["2", " ", SubscriptBox["z", "1"]]], SqrtBox["\[Pi]"]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List[FractionBox["1", "2"], ",", FractionBox["3", "2"], ",", RowBox[List["-", SubsuperscriptBox["z", "1", "2"]]]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mtext> </mtext> </mrow> <msqrt> <mi> &#960; </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SubsuperscriptBox[&quot;z&quot;, &quot;2&quot;, &quot;2&quot;]]], Hypergeometric1F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <msqrt> <mi> &#960; </mi> </msqrt> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, SubsuperscriptBox[&quot;z&quot;, &quot;1&quot;, &quot;2&quot;]]], Hypergeometric1F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Erf </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric1F1 </ci> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric1F1 </ci> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Erf", "[", RowBox[List[SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SubscriptBox["zz", "2"]]], ")"]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List[FractionBox["1", "2"], ",", FractionBox["3", "2"], ",", RowBox[List["-", SubsuperscriptBox["zz", "2", "2"]]]]], "]"]]]], SqrtBox["\[Pi]"]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SubscriptBox["zz", "1"]]], ")"]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List[FractionBox["1", "2"], ",", FractionBox["3", "2"], ",", RowBox[List["-", SubsuperscriptBox["zz", "1", "2"]]]]], "]"]]]], SqrtBox["\[Pi]"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29