html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 Erfc

 http://functions.wolfram.com/06.27.21.0053.01

 Input Form

 Integrate[E^(b z^2) Cos[c z^2] Erfc[a z], z] == (1/(4 (b^2 + c^2))) (Sqrt[Pi] (Sqrt[b - I c] (b + I c) Erfi[Sqrt[b - I c] z] + (b - I c) Sqrt[b + I c] Erfi[Sqrt[b + I c] z])) - (1/(2 Sqrt[Pi] (b + I c))) Sum[(a^(2 k + 1)/((b + I c)^k ((1 + 2 k) k!))) Gamma[1 + k, (-(b + I c)) z^2], {k, 0, Infinity}] - (1/(2 Sqrt[Pi] (b - I c))) Sum[(a^(2 k + 1)/((b - I c)^k ((1 + 2 k) k!))) Gamma[1 + k, (-(b - I c)) z^2], {k, 0, Infinity}]

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "]"]], " ", RowBox[List["Erfc", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["4", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]]]]], RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SqrtBox[RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], " ", "z"]], "]"]]]]]], ")"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["2", SqrtBox["\[Pi]"], RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List["-", "k"]]], SuperscriptBox["a", RowBox[List[RowBox[List["2", "k"]], "+", "1"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], RowBox[List["k", "!"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "k"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]]]]]], "-", RowBox[List[FractionBox["1", RowBox[List["2", SqrtBox["\[Pi]"], RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List["-", "k"]]], SuperscriptBox["a", RowBox[List[RowBox[List["2", "k"]], "+", "1"]]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], RowBox[List["k", "!"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "k"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]]]]]]]]]]]]

 MathML Form

 b z 2 cos ( c z 2 ) erfc ( a z ) z π 4 ( b 2 + c 2 ) ( b + c ( b - c ) erfi ( b + c z ) + ( b + c ) b - c erfi ( b - c z ) ) - 1 2 π ( b + c ) k = 0 ( b + c ) - k a 2 k + 1 Γ ( k + 1 , - ( b + c ) z 2 ) ( 2 k + 1 ) k ! - 1 2 π ( b - c ) k = 0 ( b - c ) - k a 2 k + 1 Γ ( k + 1 , - ( b - c ) z 2 ) ( 2 k + 1 ) k ! b z 2 cos ( c z 2 ) erfc ( a z ) z π 4 ( b 2 + c 2 ) ( b + c ( b - c ) erfi ( b + c z ) + ( b + c ) b - c erfi ( b - c z ) ) - 1 2 π ( b + c ) k = 0 ( b + c ) - k a 2 k + 1 Γ ( k + 1 , - ( b + c ) z 2 ) ( 2 k + 1 ) k ! - 1 2 π ( b - c ) k = 0 ( b - c ) - k a 2 k + 1 Γ ( k + 1 , - ( b - c ) z 2 ) ( 2 k + 1 ) k ! [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]]], " ", RowBox[List["Cos", "[", RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "]"]], " ", RowBox[List["Erfc", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], " ", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SqrtBox[RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "+", SuperscriptBox["c", "2"]]], ")"]]]]], "-", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List["-", "k"]]], " ", SuperscriptBox["a", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "k"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["k", "!"]]]]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]]], "-", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List["-", "k"]]], " ", SuperscriptBox["a", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["1", "+", "k"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["k", "!"]]]]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29