html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 Erfc

 http://functions.wolfram.com/06.27.21.0061.01

 Input Form

 Integrate[(1/z) E^(b z^2) Sin[c z^2] Erfc[a z], z] == (1/4) I (ExpIntegralEi[(b - I c) z^2] - ExpIntegralEi[(b + I c) z^2]) + ((I a z)/(2 Sqrt[Pi])) ((1/Sqrt[(-(b - I c)) z^2]) Sum[(a^(2 k) Gamma[1/2 + k, (-(b - I c)) z^2])/ ((b - I c)^k ((1 + 2 k) k!)), {k, 0, Infinity}] - (1/Sqrt[(-(b + I c)) z^2]) Sum[(a^(2 k) Gamma[1/2 + k, (-(b + I c)) z^2])/ ((b + I c)^k ((1 + 2 k) k!)), {k, 0, Infinity}])

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", "z"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "]"]], " ", RowBox[List["Erfc", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "a", " ", "z", " "]], RowBox[List["2", " ", SqrtBox["\[Pi]"]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List["-", "k"]]], " ", SuperscriptBox["a", RowBox[List["2", " ", "k"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "k"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["k", "!"]]]]]]]]], "-", RowBox[List[FractionBox["1", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List["-", "k"]]], " ", SuperscriptBox["a", RowBox[List["2", " ", "k"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "k"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["k", "!"]]]]]]]]]]], ")"]]]]]]]]]]

 MathML Form

 b z 2 sin ( c z 2 ) erfc ( a z ) z z 1 4 ( Ei ( ( b - c ) z 2 ) - Ei ( ( b + c ) z 2 ) ) + a z 2 π ( 1 - ( b - c ) z 2 k = 0 ( b - c ) - k a 2 k Γ ( k + 1 2 , - ( b - c ) z 2 ) ( 2 k + 1 ) k ! - 1 - ( b + c ) z 2 k = 0 ( b + c ) - k a 2 k Γ ( k + 1 2 , - ( b + c ) z 2 ) ( 2 k + 1 ) k ! ) b z 2 sin ( c z 2 ) erfc ( a z ) z z 1 4 ( Ei ( ( b - c ) z 2 ) - Ei ( ( b + c ) z 2 ) ) + a z 2 π ( 1 - ( b - c ) z 2 k = 0 ( b - c ) - k a 2 k Γ ( k + 1 2 , - ( b - c ) z 2 ) ( 2 k + 1 ) k ! - 1 - ( b + c ) z 2 k = 0 ( b + c ) - k a 2 k Γ ( k + 1 2 , - ( b + c ) z 2 ) ( 2 k + 1 ) k ! ) [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]]], " ", RowBox[List["Sin", "[", RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "]"]], " ", RowBox[List["Erfc", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], "z_"], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "a", " ", "z"]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List["-", "k"]]], " ", SuperscriptBox["a", RowBox[List["2", " ", "k"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "k"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["k", "!"]]]]]]], SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]], "-", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]], RowBox[List["-", "k"]]], " ", SuperscriptBox["a", RowBox[List["2", " ", "k"]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], "+", "k"]], ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["k", "!"]]]]]]], SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29