Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Erfc






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Erfc[z] > Integration > Indefinite integration > Involving direct function and Gamma-, Beta-, Erf-type functions > Involving erf-type functions > Involving erf





http://functions.wolfram.com/06.27.21.0129.01









  


  










Input Form





Integrate[Erf[b z] Erfc[a z], z] == -(Erf[b z]/(E^(a^2 z^2) (a Sqrt[Pi]))) + (1/(Sqrt[Pi] Sqrt[a^2 + b^2])) ((a/b) Erf[z Sqrt[a^2 + b^2]] + (b/a) Erf[z Sqrt[a^2 + b^2]]) + ((E^((-b^2) z^2) + b Sqrt[Pi] z Erf[b z]) Erfc[a z])/(b Sqrt[Pi])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Erf", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["Erfc", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Erf", "[", RowBox[List["b", " ", "z"]], "]"]]]], RowBox[List["a", " ", SqrtBox["\[Pi]"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List[SqrtBox["\[Pi]"], SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]]]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["a", "b"], " ", RowBox[List["Erf", "[", RowBox[List["z", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]]]]], "]"]]]], "+", RowBox[List[FractionBox["b", "a"], " ", RowBox[List["Erf", "[", RowBox[List["z", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]]]]], "]"]]]]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], " ", SuperscriptBox["z", "2"]]]], "+", RowBox[List["b", " ", SqrtBox["\[Pi]"], " ", "z", " ", RowBox[List["Erf", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Erfc", "[", RowBox[List["a", " ", "z"]], "]"]]]], RowBox[List["b", " ", SqrtBox["\[Pi]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> a </mi> <mi> b </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <ci> Erf </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <ci> Erfc </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Erf </ci> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Erf </ci> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> <apply> <ci> Erf </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Erfc </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erf </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Erf", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["Erfc", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["Erf", "[", RowBox[List["b", " ", "z"]], "]"]]]], RowBox[List["a", " ", SqrtBox["\[Pi]"]]]]]], "+", FractionBox[RowBox[List[FractionBox[RowBox[List["a", " ", RowBox[List["Erf", "[", RowBox[List["z", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]]]]], "]"]]]], "b"], "+", FractionBox[RowBox[List["b", " ", RowBox[List["Erf", "[", RowBox[List["z", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]]]]], "]"]]]], "a"]]], RowBox[List[SqrtBox["\[Pi]"], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], " ", SuperscriptBox["z", "2"]]]], "+", RowBox[List["b", " ", SqrtBox["\[Pi]"], " ", "z", " ", RowBox[List["Erf", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["Erfc", "[", RowBox[List["a", " ", "z"]], "]"]]]], RowBox[List["b", " ", SqrtBox["\[Pi]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.