Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Erfi






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Erfi[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving hyperbolic functions and a power function > Involving cosh and power





http://functions.wolfram.com/06.28.21.0091.01









  


  










Input Form





Integrate[z Cosh[b z^2] Erfi[c + a z], z] == (1/(4 ((-a^4) b + b^3))) ((a Sqrt[-a^2 + b] (a^2 + b) E^(((a^4 - 2 a^2 b - b^2) c^2)/(a^4 - b^2)) Erf[((-a) c - a^2 z + b z)/Sqrt[-a^2 + b]] + (a^2 - b) (a Sqrt[a^2 + b] E^c^2 Erfi[(a c + a^2 z + b z)/ Sqrt[a^2 + b]] - 2 (a^2 + b) E^((a^2 c^2)/(a^2 + b)) Erfi[c + a z] Sinh[b z^2]))/E^((a^2 c^2)/(a^2 + b)))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List["z", " ", RowBox[List["Cosh", "[", RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "]"]], RowBox[List["Erfi", "[", RowBox[List["c", "+", RowBox[List["a", " ", "z"]]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["a", "4"]]], " ", "b"]], "+", SuperscriptBox["b", "3"]]], ")"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["c", "2"]]], RowBox[List[SuperscriptBox["a", "2"], "+", "b"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", "b"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "-", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "b"]], "-", SuperscriptBox["b", "2"]]], ")"]], " ", SuperscriptBox["c", "2"]]], RowBox[List[SuperscriptBox["a", "4"], "-", SuperscriptBox["b", "2"]]]]], " ", RowBox[List["Erf", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", "c"]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]], "+", RowBox[List["b", " ", "z"]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", "b"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", "b"]]], " ", SuperscriptBox["\[ExponentialE]", SuperscriptBox["c", "2"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["a", " ", "c"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]], "+", RowBox[List["b", " ", "z"]]]], SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", "b"]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["c", "2"]]], RowBox[List[SuperscriptBox["a", "2"], "+", "b"]]]], " ", RowBox[List["Erfi", "[", RowBox[List["c", "+", RowBox[List["a", " ", "z"]]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 3 </mn> </msup> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mi> b </mi> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <msqrt> <mrow> <mi> b </mi> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <ci> z </ci> <apply> <cosh /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <ci> b </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <exp /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <exp /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Erf </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> c </ci> </apply> </apply> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> a </ci> </apply> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["z_", " ", RowBox[List["Cosh", "[", RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "]"]], " ", RowBox[List["Erfi", "[", RowBox[List["c_", "+", RowBox[List["a_", " ", "z_"]]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["c", "2"]]], RowBox[List[SuperscriptBox["a", "2"], "+", "b"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", "b"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "-", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "b"]], "-", SuperscriptBox["b", "2"]]], ")"]], " ", SuperscriptBox["c", "2"]]], RowBox[List[SuperscriptBox["a", "4"], "-", SuperscriptBox["b", "2"]]]]], " ", RowBox[List["Erf", "[", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", "c"]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]], "+", RowBox[List["b", " ", "z"]]]], SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", "b"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", "b"]]], " ", SuperscriptBox["\[ExponentialE]", SuperscriptBox["c", "2"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["a", " ", "c"]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "z"]], "+", RowBox[List["b", " ", "z"]]]], SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", "b"]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", "b"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["c", "2"]]], RowBox[List[SuperscriptBox["a", "2"], "+", "b"]]]], " ", RowBox[List["Erfi", "[", RowBox[List["c", "+", RowBox[List["a", " ", "z"]]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["a", "4"]]], " ", "b"]], "+", SuperscriptBox["b", "3"]]], ")"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.