Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ExpIntegralEi






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > ExpIntegralEi[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving exponential function and a power function > Involving exp and power > Linear arguments





http://functions.wolfram.com/06.35.21.0024.01









  


  










Input Form





Integrate[z E^(c z) ExpIntegralEi[a z + b], z] == (1/(a c^2 (a + c))) (((-a) c E^(((a + c) (b + a z))/a) + a (a + c) E^(c (b/a + z)) (-1 + c z) ExpIntegralEi[b + a z] + (a + c) (a + b c) ExpIntegralEi[((a + c) (b + a z))/a])/E^((b c)/a))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List["z", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", "z"]]], RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["a", " ", "z"]], "+", "b"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["a", " ", SuperscriptBox["c", "2"], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["b", " ", "c"]], "a"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", "c", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["c", " ", "z"]]]], ")"]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", "c"]]]], ")"]], " ", RowBox[List["ExpIntegralEi", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"], "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mi> a </mi> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> </msup> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <ci> z </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> c </ci> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["z_", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c_", " ", "z_"]]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["a_", " ", "z_"]], "+", "b_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["b", " ", "c"]], "a"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", "c", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["c", " ", RowBox[List["(", RowBox[List[FractionBox["b", "a"], "+", "z"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["c", " ", "z"]]]], ")"]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", "c"]]]], ")"]], " ", RowBox[List["ExpIntegralEi", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]], "a"], "]"]]]]]], ")"]]]], RowBox[List["a", " ", SuperscriptBox["c", "2"], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.