Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ExpIntegralEi






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > ExpIntegralEi[z] > Integration > Indefinite integration > Involving functions of the direct function and elementary functions > Involving elementary functions of the direct function and elementary functions > Involving products of the direct function and a power function





http://functions.wolfram.com/06.35.21.0069.01









  


  










Input Form





Integrate[z^3 ExpIntegralEi[a z] ExpIntegralEi[b z], z] == (1/(4 a^4 b^4)) ((1/(a + b)^2) (a b E^((a + b) z) (6 b^4 - 3 a b^3 (-3 + b z) + a^2 b^2 (2 + b z (-5 + b z)) + a^4 (6 + b z (-3 + b z)) + a^3 b (9 + b z (-5 + 2 b z)))) - b^4 E^(a z) (-6 + a z (6 + a z (-3 + a z))) ExpIntegralEi[b z] + a^4 ExpIntegralEi[a z] (E^(b z) (6 - b z (6 + b z (-3 + b z))) + b^4 z^4 ExpIntegralEi[b z]) - 6 (a^4 + b^4) ExpIntegralEi[(a + b) z])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "3"], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["b", "4"]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], "2"]], RowBox[List["(", RowBox[List["a", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox["b", "4"]]], "-", RowBox[List["3", " ", "a", " ", SuperscriptBox["b", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["b", " ", "z"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["b", " ", "z"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "4"], " ", RowBox[List["(", RowBox[List["6", "+", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["b", " ", "z"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "3"], " ", "b", " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["2", " ", "b", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["b", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6"]], "+", RowBox[List["a", " ", "z", " ", RowBox[List["(", RowBox[List["6", "+", RowBox[List["a", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["b", " ", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "4"], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", "z"]]], " ", RowBox[List["(", RowBox[List["6", "-", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List["6", "+", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["b", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["b", "4"], " ", SuperscriptBox["z", "4"], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]], "-", RowBox[List["6", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "+", SuperscriptBox["b", "4"]]], ")"]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "z"]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> b </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 6 </mn> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 9 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> b </mi> <mn> 4 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 6 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 6 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> <cn type='integer'> -5 </cn> </apply> </apply> <cn type='integer'> 9 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> <cn type='integer'> -5 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> <cn type='integer'> -3 </cn> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> z </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <cn type='integer'> -3 </cn> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> <cn type='integer'> -6 </cn> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "3"], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["a_", " ", "z_"]], "]"]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["b_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[FractionBox[RowBox[List["a", " ", "b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", SuperscriptBox["b", "4"]]], "-", RowBox[List["3", " ", "a", " ", SuperscriptBox["b", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["b", " ", "z"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["b", " ", "z"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "4"], " ", RowBox[List["(", RowBox[List["6", "+", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["b", " ", "z"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "3"], " ", "b", " ", RowBox[List["(", RowBox[List["9", "+", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["2", " ", "b", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], "2"]], "-", RowBox[List[SuperscriptBox["b", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6"]], "+", RowBox[List["a", " ", "z", " ", RowBox[List["(", RowBox[List["6", "+", RowBox[List["a", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["b", " ", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "4"], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", "z"]]], " ", RowBox[List["(", RowBox[List["6", "-", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List["6", "+", RowBox[List["b", " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["b", " ", "z"]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["b", "4"], " ", SuperscriptBox["z", "4"], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]], "-", RowBox[List["6", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "+", SuperscriptBox["b", "4"]]], ")"]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", "z"]], "]"]]]]]], RowBox[List["4", " ", SuperscriptBox["a", "4"], " ", SuperscriptBox["b", "4"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.