Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Factorial






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Factorial[n] > Summation > Infinite summation > Parameter-containing sums





http://functions.wolfram.com/06.01.23.0046.01









  


  










Input Form





Sum[(3 k)!/(27^k k! (2 k + n)!), {k, 0, Infinity}] == Subscript[a, n] /; Subscript[a, 0] == (2 Cos[Pi/18])/Sqrt[3] && Subscript[a, 1] == 6 Sin[Pi/18] && Subscript[a, n] == (27 Subscript[a, n - 2] + 9 (-3 + 2 n) Subscript[a, n - 1] - (36 (-1 + n))/(-1 + n)!)/((-4 + 3 n) (-2 + 3 n)) /; Element[k, Integers] && k >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", "k"]], ")"]], "!"]], RowBox[List[SuperscriptBox["27", "k"], RowBox[List["k", "!"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "n"]], ")"]], "!"]]]]]]], "\[Equal]", SubscriptBox["a", "n"]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "0"], "\[Equal]", FractionBox[RowBox[List["2", RowBox[List["Cos", "[", RowBox[List["Pi", "/", "18"]], "]"]]]], SqrtBox["3"]]]], "\[And]", RowBox[List[SubscriptBox["a", "1"], "\[Equal]", RowBox[List["6", RowBox[List["Sin", "[", FractionBox["\[Pi]", "18"], "]"]]]]]], "\[And]", RowBox[List[SubscriptBox["a", "n"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["27", " ", SubscriptBox["a", RowBox[List["n", "-", "2"]]]]], "+", RowBox[List["9", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", SubscriptBox["a", RowBox[List["n", "-", "1"]]]]], "-", FractionBox[RowBox[List["36", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "!"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", RowBox[List["3", " ", "n"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["3", " ", "n"]]]], ")"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mrow> <msup> <mn> 27 </mn> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> <mo> &#63449; </mo> <msub> <mi> a </mi> <mi> n </mi> </msub> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> &#63449; </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> &#960; </mi> <mn> 18 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <msqrt> <mn> 3 </mn> </msqrt> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> &#63449; </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> &#960; </mi> <mn> 18 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> a </mi> <mi> n </mi> </msub> <mo> &#63449; </mo> <mfrac> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <mn> 27 </mn> <mo> &#8290; </mo> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> </mrow> <mo> + </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> a </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> k </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 27 </cn> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> n </ci> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <cos /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 18 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <sin /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 18 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> n </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 27 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 9 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> n </ci> </apply> <cn type='integer'> -4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> n </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List["3", " ", "k"]], ")"]], "!"]], RowBox[List[SuperscriptBox["27", "k"], " ", RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "n"]], ")"]], "!"]]]]]]], "\[Equal]", SubscriptBox["a", "n"]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "0"], "\[Equal]", FractionBox[RowBox[List["2", " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "18"], "]"]]]], SqrtBox["3"]]]], "&&", RowBox[List[SubscriptBox["a", "1"], "\[Equal]", RowBox[List["6", " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "18"], "]"]]]]]], "&&", RowBox[List[SubscriptBox["a", "n"], "\[Equal]", FractionBox[RowBox[List[RowBox[List["27", " ", SubscriptBox["a", RowBox[List["n", "-", "2"]]]]], "+", RowBox[List["9", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "n"]]]], ")"]], " ", SubscriptBox["a", RowBox[List["n", "-", "1"]]]]], "-", FractionBox[RowBox[List["36", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], "!"]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", RowBox[List["3", " ", "n"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["3", " ", "n"]]]], ")"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", "\[GreaterEqual]", "0"]]]]]]]]










Contributed by





Troy Kessler










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.