Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











FresnelC






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > FresnelC[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving elementary functions of the direct function > Involving products of the direct function





http://functions.wolfram.com/06.33.21.0110.01









  


  










Input Form





Integrate[FresnelC[a z] FresnelC[b z], z] == (1/(2 a b (a^2 - b^2) Pi)) (b^2 Sqrt[a^2 - b^2] FresnelS[Sqrt[a^2 - b^2] z] - a^2 Sqrt[-a^2 + b^2] FresnelS[Sqrt[-a^2 + b^2] z] + a^2 Sqrt[a^2 + b^2] FresnelS[Sqrt[a^2 + b^2] z] - b^2 Sqrt[a^2 + b^2] FresnelS[Sqrt[a^2 + b^2] z] - 2 a^2 b FresnelC[b z] Sin[(1/2) a^2 Pi z^2] + 2 b^3 FresnelC[b z] Sin[(1/2) a^2 Pi z^2] + 2 a (a^2 - b^2) FresnelC[a z] (b Pi z FresnelC[b z] - Sin[(1/2) b^2 Pi z^2]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["FresnelC", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["FresnelC", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", "a", " ", "b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], " ", "\[Pi]"]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "2"], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["FresnelS", "[", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]], " ", "z"]], "]"]]]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]], " ", RowBox[List["FresnelS", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]], " ", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]]], " ", RowBox[List["FresnelS", "[", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]]], " ", "z"]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "2"], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]]], " ", RowBox[List["FresnelS", "[", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]]], " ", "z"]], "]"]]]], "-", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "b", " ", RowBox[List["FresnelC", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]]]], "+", RowBox[List["2", " ", SuperscriptBox["b", "3"], " ", RowBox[List["FresnelC", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]]]], "+", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["FresnelC", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Pi]", " ", "z", " ", RowBox[List["FresnelC", "[", RowBox[List["b", " ", "z"]], "]"]]]], "-", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["b", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, FresnelS] </annotation> </semantics> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, FresnelS] </annotation> </semantics> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, FresnelS] </annotation> </semantics> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, FresnelS] </annotation> </semantics> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <ci> FresnelC </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <ci> FresnelC </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> b </ci> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> FresnelC </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> FresnelS </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> FresnelS </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> FresnelC </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> FresnelS </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> FresnelS </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> FresnelC </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <pi /> <ci> z </ci> <apply> <ci> FresnelC </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["FresnelC", "[", RowBox[List["a_", " ", "z_"]], "]"]], " ", RowBox[List["FresnelC", "[", RowBox[List["b_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[SuperscriptBox["b", "2"], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]], " ", RowBox[List["FresnelS", "[", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]]], " ", "z"]], "]"]]]], "-", RowBox[List[SuperscriptBox["a", "2"], " ", SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]], " ", RowBox[List["FresnelS", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], "+", SuperscriptBox["b", "2"]]]], " ", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]]], " ", RowBox[List["FresnelS", "[", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]]], " ", "z"]], "]"]]]], "-", RowBox[List[SuperscriptBox["b", "2"], " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]]], " ", RowBox[List["FresnelS", "[", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]]], " ", "z"]], "]"]]]], "-", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", "b", " ", RowBox[List["FresnelC", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]]]], "+", RowBox[List["2", " ", SuperscriptBox["b", "3"], " ", RowBox[List["FresnelC", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]]]], "+", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], " ", RowBox[List["FresnelC", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", "\[Pi]", " ", "z", " ", RowBox[List["FresnelC", "[", RowBox[List["b", " ", "z"]], "]"]]]], "-", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["b", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]]]], ")"]]]]]], RowBox[List["2", " ", "a", " ", "b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "-", SuperscriptBox["b", "2"]]], ")"]], " ", "\[Pi]"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.