Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











FresnelC






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > FresnelC[z] > Integration > Indefinite integration > Involving direct function and Gamma-, Beta-, Erf-type functions > Involving erf-type functions and a power function > Involving erfi and power





http://functions.wolfram.com/06.33.21.0127.01









  


  










Input Form





Integrate[z^2 Erfi[b z] FresnelC[a z], z] == (1/(12 Pi^2)) (((4 Pi^(3/2))/b^3) (E^(b^2 z^2) (1 - b^2 z^2) + b^3 Sqrt[Pi] z^3 Erfi[b z]) FresnelC[a z] + (2/(a^3 b^3)) (((4 b^4 + I a^2 b^2 Pi - a^4 Pi^2)/Sqrt[-2 I b^2 + a^2 Pi]) (FresnelC[Sqrt[a^2 - (2 I b^2)/Pi] z] + I FresnelS[Sqrt[a^2 - (2 I b^2)/Pi] z]) + ((4 b^4 - I a^2 b^2 Pi - a^4 Pi^2)/Sqrt[2 I b^2 + a^2 Pi]) (FresnelC[Sqrt[a^2 + (2 I b^2)/Pi] z] - I FresnelS[Sqrt[a^2 + (2 I b^2)/Pi] z])) + (4 Sqrt[Pi] z Cosh[b^2 z^2] Sin[(1/2) a^2 Pi z^2])/(a b) - (4 Erfi[b z] (2 Cos[(1/2) a^2 Pi z^2] + a^2 Pi z^2 Sin[(1/2) a^2 Pi z^2]))/ a^3 - ((Sqrt[Pi] z)/(a b)) (I Sqrt[2 Pi] (-(1/Sqrt[(-2 b^2 + I a^2 Pi) z^2]) + 1/Sqrt[(-(2 b^2 + I a^2 Pi)) z^2]) - 4 Sin[(1/2) a^2 Pi z^2] Sinh[b^2 z^2]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["Erfi", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["FresnelC", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["12", " ", SuperscriptBox["\[Pi]", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List["4", " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]], SuperscriptBox["b", "3"]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["b", "3"], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", "3"], " ", RowBox[List["Erfi", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["FresnelC", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List[FractionBox["2", RowBox[List[SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "3"]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["b", "4"]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", "\[Pi]"]], "-", RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox["\[Pi]", "2"]]]]], SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["FresnelC", "[", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], "\[Pi]"]]]], " ", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["FresnelS", "[", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], "\[Pi]"]]]], " ", "z"]], "]"]]]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["4", " ", SuperscriptBox["b", "4"]]], "-", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", "\[Pi]"]], "-", RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox["\[Pi]", "2"]]]]], SqrtBox[RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["FresnelC", "[", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], "\[Pi]"]]]], " ", "z"]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["FresnelS", "[", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], "\[Pi]"]]]], " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], "+", FractionBox[RowBox[List["4", " ", SqrtBox["\[Pi]"], " ", "z", " ", RowBox[List["Cosh", "[", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]]]], RowBox[List["a", " ", "b"]]], "-", FractionBox[RowBox[List["4", " ", RowBox[List["Erfi", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]]]]]], ")"]]]], SuperscriptBox["a", "3"]], "-", RowBox[List[FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", "z"]], RowBox[List["a", " ", "b"]]], RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["1", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", "\[Pi]"]]]], ")"]], " ", SuperscriptBox["z", "2"]]]]]]], "+", FractionBox["1", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", "\[Pi]"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]]]], ")"]]]], "-", RowBox[List["4", " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]], "]"]]]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> b </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mi> b </mi> <mn> 3 </mn> </msup> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 2 </mn> <mrow> <msup> <mi> a </mi> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <msqrt> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mi> &#960; </mi> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, FresnelS] </annotation> </semantics> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mi> &#960; </mi> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <msqrt> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox[&quot;C&quot;, FresnelC] </annotation> </semantics> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mi> &#960; </mi> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, FresnelS] </annotation> </semantics> <mo> ( </mo> <mrow> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mi> &#960; </mi> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mfrac> <mo> - </mo> <mrow> <mfrac> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <ci> FresnelC </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <pi /> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> FresnelC </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <pi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <imaginaryi /> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> FresnelC </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <imaginaryi /> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <ci> FresnelS </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <imaginaryi /> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <imaginaryi /> <pi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> FresnelC </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <ci> FresnelS </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> <apply> <cosh /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sinh /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Erfi </ci> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "2"], " ", RowBox[List["Erfi", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["FresnelC", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["4", " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["b", "3"], " ", SqrtBox["\[Pi]"], " ", SuperscriptBox["z", "3"], " ", RowBox[List["Erfi", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["FresnelC", "[", RowBox[List["a", " ", "z"]], "]"]]]], SuperscriptBox["b", "3"]], "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["b", "4"]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", "\[Pi]"]], "-", RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox["\[Pi]", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["FresnelC", "[", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], "\[Pi]"]]]], " ", "z"]], "]"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["FresnelS", "[", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], "\[Pi]"]]]], " ", "z"]], "]"]]]]]], ")"]]]], SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["4", " ", SuperscriptBox["b", "4"]]], "-", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", "\[Pi]"]], "-", RowBox[List[SuperscriptBox["a", "4"], " ", SuperscriptBox["\[Pi]", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["FresnelC", "[", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], "\[Pi]"]]]], " ", "z"]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["FresnelS", "[", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "+", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], "\[Pi]"]]]], " ", "z"]], "]"]]]]]], ")"]]]], SqrtBox[RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]"]]]]]]]], ")"]]]], RowBox[List[SuperscriptBox["a", "3"], " ", SuperscriptBox["b", "3"]]]], "+", FractionBox[RowBox[List["4", " ", SqrtBox["\[Pi]"], " ", "z", " ", RowBox[List["Cosh", "[", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]]]], RowBox[List["a", " ", "b"]]], "-", FractionBox[RowBox[List["4", " ", RowBox[List["Erfi", "[", RowBox[List["b", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"], " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]]]]]], ")"]]]], SuperscriptBox["a", "3"]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], " ", "z"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["1", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", "\[Pi]"]]]], ")"]], " ", SuperscriptBox["z", "2"]]]]]]], "+", FractionBox["1", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["a", "2"], " ", "\[Pi]"]]]], ")"]]]], " ", SuperscriptBox["z", "2"]]]]]]], ")"]]]], "-", RowBox[List["4", " ", RowBox[List["Sin", "[", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["a", "2"], " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]], "]"]]]]]], ")"]]]], RowBox[List["a", " ", "b"]]]]], RowBox[List["12", " ", SuperscriptBox["\[Pi]", "2"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.