Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Gamma






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Gamma[a,z] > Series representations > Generalized power series > Expansions at generic point a==a0 > For the function itself





http://functions.wolfram.com/06.06.06.0019.01









  


  










Input Form





Gamma[a, z] == Sum[(Derivative[k][Gamma][Subscript[a, 0]]/k! - z^Subscript[a, 0] Sum[((-1)^(k - j)/j!) Gamma[Subscript[a, 0]]^ (k - j + 1) Log[z]^j HypergeometricPFQRegularized[ {Subscript[c, 1], Subscript[c, 2], \[Ellipsis], Subscript[c, k - j + 1]}, {1 + Subscript[c, 1], 1 + Subscript[c, 2], \[Ellipsis], 1 + Subscript[c, k - j + 1]}, -z], {j, 0, k}]) (a - Subscript[a, 0])^k, {k, 0, Infinity}] /; Subscript[c, 1] == Subscript[c, 2] == \[Ellipsis] == Subscript[c, k + 1] == Subscript[a, 0] && Element[k, Integers] && k >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", ",", "z"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", SubscriptBox["a", "0"], "]"]], RowBox[List["k", "!"]]], "-", RowBox[List[SuperscriptBox["z", SubscriptBox["a", "0"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "-", "j"]]], " "]], RowBox[List["j", "!"]]], SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["a", "0"], "]"]], RowBox[List["k", "-", "j", "+", "1"]]], " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "j"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["c", "1"], ",", SubscriptBox["c", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["c", RowBox[List["k", "-", "j", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["c", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["c", "2"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["c", RowBox[List["k", "-", "j", "+", "1"]]]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]]]]]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", SubscriptBox["a", "0"]]], ")"]], "k"]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["c", "1"], "\[Equal]", SubscriptBox["c", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["c", RowBox[List["k", "+", "1"]]], "\[Equal]", SubscriptBox["a", "0"]]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#915; </mi> <semantics> <mrow> <mo> ( </mo> <mi> k </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, &quot;k&quot;, &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> - </mo> <mrow> <msup> <mi> z </mi> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mi> j </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> c </mi> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;c&quot;, &quot;1&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;c&quot;, &quot;2&quot;], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;c&quot;, RowBox[List[&quot;k&quot;, &quot;-&quot;, &quot;j&quot;, &quot;+&quot;, &quot;1&quot;]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, True]] </annotation> </semantics> <mo> ; </mo> <semantics> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <msub> <mi> c </mi> <mrow> <mi> k </mi> <mo> - </mo> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;c&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;c&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;c&quot;, RowBox[List[&quot;k&quot;, &quot;-&quot;, &quot;j&quot;, &quot;+&quot;, &quot;1&quot;]]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, True]] </annotation> </semantics> <mo> ; </mo> <semantics> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> &#10869; </mo> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> &#10869; </mo> <mo> &#8230; </mo> <mo> &#10869; </mo> <msub> <mi> c </mi> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> &#10869; </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> &#8743; </mo> <mrow> <mi> k </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> a </ms> <ms> , </ms> <ms> z </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> &#10869; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> &#8721; </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 0 </ms> </list> </apply> <ms> &#8734; </ms> </apply> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> &#915; </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <ms> k </ms> <ms> ) </ms> </list> </apply> <ci> Derivative </ci> </apply> </apply> <ms> ( </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 0 </ms> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> ! </ms> </list> </apply> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> z </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 0 </ms> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> &#8721; </ms> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> = </ms> <ms> 0 </ms> </list> </apply> <ms> k </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> - </ms> <ms> j </ms> </list> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> &#915; </ms> <ms> ( </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 0 </ms> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> - </ms> <ms> j </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> log </ms> <ms> j </ms> </apply> <ms> ( </ms> <ms> z </ms> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> ! </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> &#62387; </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> - </ms> <ms> j </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </apply> <apply> <ci> SubscriptBox </ci> <apply> <ci> OverscriptBox </ci> <ms> F </ms> <ms> ~ </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> - </ms> <ms> j </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </apply> </list> </apply> <ms> &#8289; </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> c </ms> <ms> 1 </ms> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> c </ms> <ms> 2 </ms> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> &#8230; </ms> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> c </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> - </ms> <ms> j </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> c </ms> <ms> 1 </ms> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> c </ms> <ms> 2 </ms> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> &#8230; </ms> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> c </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> - </ms> <ms> j </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> z </ms> </list> </apply> <ci> HypergeometricPFQRegularized </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> a </ms> <ms> - </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 0 </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> k </ms> </apply> </list> </apply> </apply> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> c </ms> <ms> 1 </ms> </apply> <ms> &#10869; </ms> <apply> <ci> SubscriptBox </ci> <ms> c </ms> <ms> 2 </ms> </apply> <ms> &#10869; </ms> <ms> &#8230; </ms> <ms> &#10869; </ms> <apply> <ci> SubscriptBox </ci> <ms> c </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </apply> <ms> &#10869; </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 0 </ms> </apply> </list> </apply> <ms> &#8743; </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> &#8712; </ms> <ms> &#8469; </ms> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Gamma", "[", RowBox[List["a_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["Gamma", TagBox[RowBox[List["(", "k", ")"]], Derivative], Rule[MultilineFunction, None]], "[", SubscriptBox["aa", "0"], "]"]], RowBox[List["k", "!"]]], "-", RowBox[List[SuperscriptBox["z", SubscriptBox["aa", "0"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["k", "-", "j"]]], " ", SuperscriptBox[RowBox[List["Gamma", "[", SubscriptBox["aa", "0"], "]"]], RowBox[List["k", "-", "j", "+", "1"]]], " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "j"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["c", "1"], ",", SubscriptBox["c", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["c", RowBox[List["k", "-", "j", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["c", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["c", "2"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["c", RowBox[List["k", "-", "j", "+", "1"]]]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]]]], RowBox[List["j", "!"]]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", SubscriptBox["aa", "0"]]], ")"]], "k"]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["c", "1"], "\[Equal]", SubscriptBox["c", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["c", RowBox[List["k", "+", "1"]]], "\[Equal]", SubscriptBox["aa", "0"]]], "&&", RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.