Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Gamma






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Gamma[a,z1,z2] > Differentiation > Fractional integro-differentiation > With respect to z2





http://functions.wolfram.com/06.07.20.0015.01









  


  










Input Form





D[Gamma[a, Subscript[z, 1], Subscript[z, 2]], {Subscript[z, 2], \[Alpha]}] == (1/(Subscript[z, 2]^\[Alpha] Gamma[1 - \[Alpha]])) (Gamma[a, Subscript[z, 1]] - Gamma[a]) + Sum[((-1)^k FDPowerConstant[Subscript[z, 2], a + k, \[Alpha]] Subscript[z, 2]^(a + k - \[Alpha]))/((a + k) k!), {k, 0, Infinity}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List[SubscriptBox["z", "2"], ",", "\[Alpha]"]], "}"]]], RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[SubsuperscriptBox["z", "2", RowBox[List["-", "\[Alpha]"]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Alpha]"]], "]"]]], RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["z", "1"]]], "]"]], "-", RowBox[List["Gamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List["FDPowerConstant", "[", RowBox[List[SubscriptBox["z", "2"], ",", RowBox[List["a", "+", "k"]], ",", "\[Alpha]"]], "]"]], SubsuperscriptBox["z", "2", RowBox[List["a", "+", "k", "-", "\[Alpha]"]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], " ", RowBox[List["k", "!"]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> &#945; </mi> </msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mi> &#945; </mi> </msubsup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mtext> </mtext> <msubsup> <mi> z </mi> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msubsup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#945; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <mi> &#8497;&#119966; </mi> <mi> exp </mi> <mrow> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> <mo> - </mo> <mi> &#945; </mi> </mrow> </msubsup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> D </ci> <apply> <ci> Gamma </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#945; </ci> </list> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Gamma </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#8497;&#119966; </ci> <ci> exp </ci> </apply> <ci> &#945; </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> k </ci> </apply> <apply> <factorial /> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["z_", "2"], ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["Gamma", "[", RowBox[List["a_", ",", SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SubsuperscriptBox["zz", "2", RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", ",", SubscriptBox["zz", "1"]]], "]"]], "-", RowBox[List["Gamma", "[", "a", "]"]]]], ")"]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Alpha]"]], "]"]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["FDPowerConstant", "[", RowBox[List[SubscriptBox["zz", "2"], ",", RowBox[List["a", "+", "k"]], ",", "\[Alpha]"]], "]"]], " ", SubsuperscriptBox["zz", "2", RowBox[List["a", "+", "k", "-", "\[Alpha]"]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], " ", RowBox[List["k", "!"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.