Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GammaRegularized






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > GammaRegularized[a,z] > Series representations > Generalized power series > Expansions of Q(Epsilon-n,z) at Epsilon==0 > For the function itself





http://functions.wolfram.com/06.08.06.0015.01









  


  










Input Form





GammaRegularized[-n + \[Epsilon], z] \[Proportional] (-1)^n n! Gamma[-n, z] \[Epsilon] + (-1)^n n! (Gamma[-n, z] (EulerGamma - HarmonicNumber[n] + Log[z]) + MeijerG[{{}, {1, 1}}, {{0, 0, -n}, {}}, z]) \[Epsilon]^2 + (-1)^n n! (1/6) (6 (EulerGamma - HarmonicNumber[n] + Log[z]) MeijerG[{{}, {1, 1}}, {{0, 0, -n}, {}}, z] + 6 MeijerG[{{}, {1, 1, 1}}, {{0, 0, 0, -n}, {}}, z] + Gamma[-n, z] (-Pi^2 + 3 Log[z]^2 + 3 PolyGamma[0, 1 + n] (-2 Log[z] + PolyGamma[0, 1 + n]) + 3 PolyGamma[1, 1 + n])) \[Epsilon]^3 + O[\[Epsilon]^4] /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["GammaRegularized", "[", RowBox[List[RowBox[List[RowBox[List["-", "n"]], "+", "\[Epsilon]"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List["n", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", "z"]], "]"]], "\[Epsilon]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", "z"]], "]"]], " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["HarmonicNumber", "[", "n", "]"]], "+", RowBox[List["Log", "[", "z", "]"]]]], ")"]]]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]]]], ")"]], SuperscriptBox["\[Epsilon]", "2"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", FractionBox["1", "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["HarmonicNumber", "[", "n", "]"]], "+", RowBox[List["Log", "[", "z", "]"]]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List["6", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[Pi]", "2"]]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "2"]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["0", ",", RowBox[List["1", "+", "n"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["0", ",", RowBox[List["1", "+", "n"]]]], "]"]]]], ")"]]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "n"]]]], "]"]]]]]], ")"]]]]]], ")"]], SuperscriptBox["\[Epsilon]", "3"]]], "+", RowBox[List["O", "[", SuperscriptBox["\[Epsilon]", "4"], "]"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mi> &#1013; </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#1013; </mi> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mi> n </mi> </msub> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;3&quot;]], RowBox[List[&quot;3&quot;, &quot;,&quot;, &quot;0&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[&quot;z&quot;, MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[&quot;1&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;n&quot;]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#1013; </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mi> n </mi> </msub> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mrow> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;3&quot;]], RowBox[List[&quot;3&quot;, &quot;,&quot;, &quot;0&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[&quot;z&quot;, MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[&quot;1&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;n&quot;]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 3 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;3&quot;, &quot;,&quot;, &quot;4&quot;]], RowBox[List[&quot;4&quot;, &quot;,&quot;, &quot;0&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[&quot;z&quot;, MeijerG, Rule[Editable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[&quot;1&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;n&quot;]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#1013; </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> &#1013; </mi> <mn> 4 </mn> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> GammaRegularized </ci> <apply> <plus /> <ci> &#1013; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> z </ci> </apply> <ci> &#1013; </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> HarmonicNumber </ci> <ci> n </ci> </apply> </apply> <apply> <ln /> <ci> z </ci> </apply> <eulergamma /> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </list> <list /> </list> <ci> z </ci> </apply> </apply> <apply> <power /> <ci> &#1013; </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 6 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> HarmonicNumber </ci> <ci> n </ci> </apply> </apply> <apply> <ln /> <ci> z </ci> </apply> <eulergamma /> </apply> <apply> <ci> MeijerG </ci> <list> <list /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </list> <list /> </list> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <ci> MeijerG </ci> <list> <list /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> <cn type='integer'> 1 </cn> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </list> <list /> </list> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <ln /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 0 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <cn type='integer'> 0 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> &#1013; </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <ci> &#1013; </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["GammaRegularized", "[", RowBox[List[RowBox[List[RowBox[List["-", "n_"]], "+", "\[Epsilon]_"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", "z"]], "]"]], " ", "\[Epsilon]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", "z"]], "]"]], " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["HarmonicNumber", "[", "n", "]"]], "+", RowBox[List["Log", "[", "z", "]"]]]], ")"]]]], "+", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]]]], ")"]], " ", SuperscriptBox["\[Epsilon]", "2"]]], "+", RowBox[List[FractionBox["1", "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List["6", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["HarmonicNumber", "[", "n", "]"]], "+", RowBox[List["Log", "[", "z", "]"]]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List["6", " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "1", ",", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", "0", ",", "0", ",", RowBox[List["-", "n"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[Pi]", "2"]]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "2"]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["0", ",", RowBox[List["1", "+", "n"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["0", ",", RowBox[List["1", "+", "n"]]]], "]"]]]], ")"]]]], "+", RowBox[List["3", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "n"]]]], "]"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["\[Epsilon]", "3"]]], "+", SuperscriptBox[RowBox[List["O", "[", "\[Epsilon]", "]"]], "4"]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.