Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
GammaRegularized






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > GammaRegularized[a,z1,z2] > Series representations > Generalized power series > Expansions at {z1,z2}=={0,0} > For the function itself > General case





http://functions.wolfram.com/06.09.06.0009.01









  


  










Input Form





GammaRegularized[a, Subscript[z, 1], Subscript[z, 2]] \[Proportional] Subscript[z, 2]^a (1/Gamma[1 + a] - (a Subscript[z, 2])/Gamma[2 + a] + (a (1 + a) Subscript[z, 2]^2)/(2 Gamma[3 + a]) + O[Subscript[z, 2]^3]) - Subscript[z, 1]^a (1/Gamma[1 + a] - (a Subscript[z, 1])/Gamma[2 + a] + (a (1 + a) Subscript[z, 1]^2)/(2 Gamma[3 + a]) + O[Subscript[z, 1]^3])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["GammaRegularized", "[", RowBox[List["a", ",", SubscriptBox["z", "1"], ",", SubscriptBox["z", "2"]]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[SubsuperscriptBox["z", "2", "a"], RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]]], "-", FractionBox[RowBox[List["a", " ", SubscriptBox["z", "2"]]], RowBox[List["Gamma", "[", RowBox[List["2", "+", "a"]], "]"]]], "+", FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", SubsuperscriptBox["z", "2", "2"]]], RowBox[List["2", " ", RowBox[List["Gamma", "[", RowBox[List["3", "+", "a"]], "]"]]]]], "+", RowBox[List["O", "[", SubsuperscriptBox["z", "2", "3"], "]"]]]], ")"]]]], "-", RowBox[List[SubsuperscriptBox["z", "1", "a"], RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]]], "-", FractionBox[RowBox[List["a", " ", SubscriptBox["z", "1"]]], RowBox[List["Gamma", "[", RowBox[List["2", "+", "a"]], "]"]]], "+", FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", SubsuperscriptBox["z", "1", "2"]]], RowBox[List["2", " ", RowBox[List["Gamma", "[", RowBox[List["3", "+", "a"]], "]"]]]]], "+", RowBox[List["O", "[", SubsuperscriptBox["z", "1", "3"], "]"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <msubsup> <mi> z </mi> <mn> 2 </mn> <mi> a </mi> </msubsup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 2 </mn> </msub> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msubsup> <mi> z </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msubsup> <mi> z </mi> <mn> 1 </mn> <mi> a </mi> </msubsup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msub> <mi> z </mi> <mn> 1 </mn> </msub> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msubsup> <mi> z </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Proportional </ci> <apply> <ci> GammaRegularized </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> a </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["GammaRegularized", "[", RowBox[List["a_", ",", SubscriptBox["z_", "1"], ",", SubscriptBox["z_", "2"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SubsuperscriptBox["zz", "2", "a"], " ", RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]]], "-", FractionBox[RowBox[List["a", " ", SubscriptBox["zz", "2"]]], RowBox[List["Gamma", "[", RowBox[List["2", "+", "a"]], "]"]]], "+", FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", SubsuperscriptBox["zz", "2", "2"]]], RowBox[List["2", " ", RowBox[List["Gamma", "[", RowBox[List["3", "+", "a"]], "]"]]]]], "+", SuperscriptBox[RowBox[List["O", "[", SubscriptBox["zz", "2"], "]"]], "3"]]], ")"]]]], "-", RowBox[List[SubsuperscriptBox["zz", "1", "a"], " ", RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a"]], "]"]]], "-", FractionBox[RowBox[List["a", " ", SubscriptBox["zz", "1"]]], RowBox[List["Gamma", "[", RowBox[List["2", "+", "a"]], "]"]]], "+", FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", SubsuperscriptBox["zz", "1", "2"]]], RowBox[List["2", " ", RowBox[List["Gamma", "[", RowBox[List["3", "+", "a"]], "]"]]]]], "+", SuperscriptBox[RowBox[List["O", "[", SubscriptBox["zz", "1"], "]"]], "3"]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.