Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HarmonicNumber






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > HarmonicNumber[z] > Summation > Finite summation





http://functions.wolfram.com/06.16.23.0002.01









  


  










Input Form





Sum[HarmonicNumber[k/q] Exp[(2 Pi p k I)/q], {k, 1, q}] == (-1)^p E^((I p Pi)/q) Csc[(p Pi)/q] Sin[p Pi] EulerGamma - q Beta[E^((2 I p Pi)/q), q + 1, 0] /; Element[p, Integers] && p > 0 && Element[q, Integers] && q > 0 && p < q










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "q"], RowBox[List[RowBox[List["HarmonicNumber", "[", FractionBox["k", "q"], "]"]], RowBox[List["Exp", "[", FractionBox[RowBox[List["2", "\[Pi]", " ", "p", " ", "k", " ", "\[ImaginaryI]"]], "q"], "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "p"], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p", " ", "\[Pi]"]], "q"]], RowBox[List["Csc", "[", FractionBox[RowBox[List["p", " ", "\[Pi]"]], "q"], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["p", " ", "\[Pi]"]], "]"]], " ", "EulerGamma"]], "-", " ", RowBox[List["q", " ", RowBox[List["Beta", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", "p", " ", "\[Pi]"]], "q"]], ",", RowBox[List["q", "+", "1"]], ",", "0"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", ">", "0"]], "\[And]", RowBox[List["q", "\[Element]", "Integers"]], "\[And]", RowBox[List["q", ">", "0"]], "\[And]", RowBox[List["p", "<", "q"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <mrow> <msub> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mfrac> <mi> k </mi> <mi> q </mi> </mfrac> </msub> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> p </mi> <mo> &#8290; </mo> <mi> k </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mi> q </mi> </mfrac> </msup> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> p </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> p </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mi> q </mi> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mi> csc </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mi> q </mi> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[EulerGamma]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mi> q </mi> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> &#914; </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> p </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mi> q </mi> </mfrac> </msup> </msub> <mo> ( </mo> <mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> p </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> q </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> p </mi> <mo> &lt; </mo> <mi> q </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> q </ci> </uplimit> <apply> <times /> <apply> <ci> HarmonicNumber </ci> <apply> <times /> <ci> k </ci> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <ci> p </ci> <ci> k </ci> <imaginaryi /> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> p </ci> <pi /> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <csc /> <apply> <times /> <ci> p </ci> <pi /> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> p </ci> <pi /> </apply> </apply> <eulergamma /> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> q </ci> <apply> <ci> Beta </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> p </ci> <pi /> <apply> <power /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> p </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> q </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <lt /> <ci> p </ci> <ci> q </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "1"]], "q_"], RowBox[List[RowBox[List["HarmonicNumber", "[", FractionBox["k_", "q_"], "]"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", "\[Pi]", " ", "p_", " ", "k_", " ", "\[ImaginaryI]"]], "q_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "p"], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", "p", " ", "\[Pi]"]], "q"]], " ", RowBox[List["Csc", "[", FractionBox[RowBox[List["p", " ", "\[Pi]"]], "q"], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["p", " ", "\[Pi]"]], "]"]], " ", "EulerGamma"]], "-", RowBox[List["q", " ", RowBox[List["Beta", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", "p", " ", "\[Pi]"]], "q"]], ",", RowBox[List["q", "+", "1"]], ",", "0"]], "]"]]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", ">", "0"]], "&&", RowBox[List["q", "\[Element]", "Integers"]], "&&", RowBox[List["q", ">", "0"]], "&&", RowBox[List["p", "<", "q"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.