Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HarmonicNumber






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > HarmonicNumber[z,r] > Specific values > Specialized values > For fixed z





http://functions.wolfram.com/06.17.03.0019.01









  


  










Input Form





HarmonicNumber[z, r] == ((-1)^r/(r - 1)!) ((D[(1/Gamma[z + 1]) D[Gamma[z + 1], {z, 1}], {z, r - 1}] /. {z -> 0}) - D[(1/Gamma[z + 1]) D[Gamma[z + 1], {z, 1}], {z, r - 1}]) /; Element[r, Integers] && r > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HarmonicNumber", "[", RowBox[List["z", ",", "r"]], "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], RowBox[List[RowBox[List["(", RowBox[List["r", "-", "1"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", RowBox[List["r", "-", "1"]]]], "}"]]], RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["z", "+", "1"]], "]"]]], RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "1"]], "}"]]], RowBox[List["Gamma", "[", RowBox[List["z", "+", "1"]], "]"]]]]]], ")"]]]], "/.", RowBox[List["{", RowBox[List["z", "\[Rule]", "0"]], "}"]]]], ")"]], "-", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", RowBox[List["r", "-", "1"]]]], "}"]]], RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List["Gamma", "[", RowBox[List["z", "+", "1"]], "]"]]], RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "1"]], "}"]]], RowBox[List["Gamma", "[", RowBox[List["z", "+", "1"]], "]"]]]]]], ")"]]]]]], ")"]]]]]], "/;", " ", RowBox[List[RowBox[List["r", "\[Element]", "Integers"]], "\[And]", RowBox[List["r", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mi> z </mi> <mrow> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> </msubsup> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> r </mi> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mfrac> <mfrac> <mrow> <mo> &#8706; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <mi> z </mi> </mrow> </mfrac> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mfrac> <mo> /. </mo> <mtext> &#8203; </mtext> <mrow> <mo> { </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mfrac> <mfrac> <mrow> <mo> &#8706; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <mi> z </mi> </mrow> </mfrac> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> r </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HarmonicNumber </ci> <ci> z </ci> <ci> r </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> ReplaceAll </ci> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <apply> <plus /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </degree> </bvar> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <list> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </list> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <apply> <plus /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </degree> </bvar> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> r </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HarmonicNumber", "[", RowBox[List["z_", ",", "r_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "r"], " ", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z", ",", RowBox[List["r", "-", "1"]]]], "}"]]]]], FractionBox[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z", ",", "1"]], "}"]]]]], RowBox[List["Gamma", "[", RowBox[List["z", "+", "1"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["z", "+", "1"]], "]"]]]]], "/.", "\[InvisibleSpace]", RowBox[List["{", RowBox[List["z", "\[Rule]", "0"]], "}"]]]], ")"]], "-", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z", ",", RowBox[List["r", "-", "1"]]]], "}"]]]]], FractionBox[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z", ",", "1"]], "}"]]]]], RowBox[List["Gamma", "[", RowBox[List["z", "+", "1"]], "]"]]]], RowBox[List["Gamma", "[", RowBox[List["z", "+", "1"]], "]"]]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["r", "-", "1"]], ")"]], "!"]]], "/;", RowBox[List[RowBox[List["r", "\[Element]", "Integers"]], "&&", RowBox[List["r", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02