Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
InverseBetaRegularized






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > InverseBetaRegularized[z,a,b] > Differentiation > Low-order differentiation > With respect to z





http://functions.wolfram.com/06.23.20.0009.01









  


  










Input Form





D[InverseBetaRegularized[z, a, b], {z, 5}] == (1 - w)^(1 - 5 b) w^(1 - 5 a) (1 - 10 a + 35 a^2 - 50 a^3 + 24 a^4 - 2 (-1 + a) (-1 + 2 a) (15 - 13 b + 2 a (-19 + 12 a + 12 b)) w + 2 (-1 + a) (-75 + 72 a^3 + (121 - 49 b) b + 6 a^2 (-37 + 24 b) + a (226 + b (-271 + 72 b))) w^2 - 4 (-1 + a) (-3 + 2 a + 2 b) (-4 + 3 a + 3 b) (-5 + 4 a + 4 b) w^3 + (-2 + a + b) (-3 + 2 a + 2 b) (-4 + 3 a + 3 b) (-5 + 4 a + 4 b) w^4) Beta[a, b]^5 /; w == InverseBetaRegularized[z, a, b]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "5"]], "}"]]], RowBox[List["InverseBetaRegularized", "[", RowBox[List["z", ",", "a", ",", "b"]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], RowBox[List["1", "-", RowBox[List["5", " ", "b"]]]]], " ", SuperscriptBox["w", RowBox[List["1", "-", RowBox[List["5", " ", "a"]]]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["10", " ", "a"]], "+", RowBox[List["35", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["50", " ", SuperscriptBox["a", "3"]]], "+", RowBox[List["24", " ", SuperscriptBox["a", "4"]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["(", RowBox[List["15", "-", RowBox[List["13", " ", "b"]], "+", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["12", " ", "a"]], "+", RowBox[List["12", " ", "b"]]]], ")"]]]]]], ")"]], " ", "w"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "75"]], "+", RowBox[List["72", " ", SuperscriptBox["a", "3"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["121", "-", RowBox[List["49", " ", "b"]]]], ")"]], " ", "b"]], "+", RowBox[List["6", " ", SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "37"]], "+", RowBox[List["24", " ", "b"]]]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["226", "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "271"]], "+", RowBox[List["72", " ", "b"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "2"]]], "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", RowBox[List["3", " ", "a"]], "+", RowBox[List["3", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["4", " ", "a"]], "+", RowBox[List["4", " ", "b"]]]], ")"]], " ", SuperscriptBox["w", "3"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", RowBox[List["3", " ", "a"]], "+", RowBox[List["3", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["4", " ", "a"]], "+", RowBox[List["4", " ", "b"]]]], ")"]], " ", SuperscriptBox["w", "4"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Beta", "[", RowBox[List["a", ",", "b"]], "]"]], "5"]]]]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["InverseBetaRegularized", "[", RowBox[List["z", ",", "a", ",", "b"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 5 </mn> </msup> <mrow> <msubsup> <semantics> <mi> I </mi> <annotation-xml encoding='MathML-Content'> <ci> BetaRegularized </ci> </annotation-xml> </semantics> <mi> z </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> w </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 50 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 35 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 10 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 72 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 37 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 72 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 271 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 226 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 121 </mn> <mo> - </mo> <mrow> <mn> 49 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 75 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 13 </mn> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mn> 19 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 15 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> w </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <semantics> <mi> &#914; </mi> <annotation-xml encoding='MathML-Content'> <ci> Beta </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> w </mi> <mo> &#10869; </mo> <mrow> <msubsup> <semantics> <mi> I </mi> <annotation-xml encoding='MathML-Content'> <ci> BetaRegularized </ci> </annotation-xml> </semantics> <mi> z </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 5 </cn> </degree> </bvar> <apply> <ci> InverseBetaRegularized </ci> <ci> z </ci> <ci> a </ci> <ci> b </ci> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 50 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 35 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10 </cn> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> <cn type='integer'> -4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> <cn type='integer'> -5 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> <cn type='integer'> -4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> <cn type='integer'> -5 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 72 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> b </ci> </apply> <cn type='integer'> -37 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 72 </cn> <ci> b </ci> </apply> <cn type='integer'> -271 </cn> </apply> </apply> <cn type='integer'> 226 </cn> </apply> <ci> a </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <cn type='integer'> 121 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 49 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -75 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -13 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 12 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <ci> b </ci> </apply> <cn type='integer'> -19 </cn> </apply> </apply> <cn type='integer'> 15 </cn> </apply> <ci> w </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Beta </ci> <ci> a </ci> <ci> b </ci> </apply> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <eq /> <ci> w </ci> <apply> <ci> InverseBetaRegularized </ci> <ci> z </ci> <ci> a </ci> <ci> b </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "5"]], "}"]]]]], RowBox[List["InverseBetaRegularized", "[", RowBox[List["z_", ",", "a_", ",", "b_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "w"]], ")"]], RowBox[List["1", "-", RowBox[List["5", " ", "b"]]]]], " ", SuperscriptBox["w", RowBox[List["1", "-", RowBox[List["5", " ", "a"]]]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["10", " ", "a"]], "+", RowBox[List["35", " ", SuperscriptBox["a", "2"]]], "-", RowBox[List["50", " ", SuperscriptBox["a", "3"]]], "+", RowBox[List["24", " ", SuperscriptBox["a", "4"]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["(", RowBox[List["15", "-", RowBox[List["13", " ", "b"]], "+", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["12", " ", "a"]], "+", RowBox[List["12", " ", "b"]]]], ")"]]]]]], ")"]], " ", "w"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "75"]], "+", RowBox[List["72", " ", SuperscriptBox["a", "3"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["121", "-", RowBox[List["49", " ", "b"]]]], ")"]], " ", "b"]], "+", RowBox[List["6", " ", SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "37"]], "+", RowBox[List["24", " ", "b"]]]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["226", "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "271"]], "+", RowBox[List["72", " ", "b"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "2"]]], "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", RowBox[List["3", " ", "a"]], "+", RowBox[List["3", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["4", " ", "a"]], "+", RowBox[List["4", " ", "b"]]]], ")"]], " ", SuperscriptBox["w", "3"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "a", "+", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4"]], "+", RowBox[List["3", " ", "a"]], "+", RowBox[List["3", " ", "b"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "5"]], "+", RowBox[List["4", " ", "a"]], "+", RowBox[List["4", " ", "b"]]]], ")"]], " ", SuperscriptBox["w", "4"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Beta", "[", RowBox[List["a", ",", "b"]], "]"]], "5"]]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["InverseBetaRegularized", "[", RowBox[List["z", ",", "a", ",", "b"]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.