Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
InverseGammaRegularized






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > InverseGammaRegularized[a,z] > Differentiation > Low-order differentiation > With respect to a





http://functions.wolfram.com/06.12.20.0002.01









  


  










Input Form





D[InverseGammaRegularized[a, z], {a, 2}] == E^w w Gamma[a]^3 (E^w (1 - a + w) Gamma[a] HypergeometricPFQRegularized[{a, a}, {1 + a, 1 + a}, -w]^2 - 2 HypergeometricPFQRegularized[{a, a, a}, {1 + a, 1 + a, 1 + a}, -w]) + 2 E^(2 w) w^(1 - a) (1 - a + w) Gamma[a]^2 HypergeometricPFQRegularized[ {a, a}, {1 + a, 1 + a}, -w] ((-Gamma[a, w]) PolyGamma[a] + Gamma[a] ((z - 1) Log[w] + PolyGamma[a])) + E^w w^(1 - 2 a) (E^w (1 - a + w) Gamma[a]^2 ((z - 1) Log[w] + PolyGamma[a])^2 + Gamma[a, w] ((-w^a + E^w (1 - a + w) Gamma[a, w]) PolyGamma[a]^2 + 2 a E^w Gamma[a] PolyGamma[a] ((z - 1) Log[w] + PolyGamma[a]) + w^a (Log[w]^2 - PolyGamma[1, a])) + Gamma[a] (2 (z - 1) (w^a - E^w (1 + w) Gamma[a, w]) Log[w] PolyGamma[a] + (w^a - 2 E^w (1 + w) Gamma[a, w]) PolyGamma[a]^2 + w^a ((1 - 2 z) Log[w]^2 + PolyGamma[1, a]))) /; w == InverseGammaRegularized[a, z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["a", ",", "2"]], "}"]]], RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", "w", " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", SuperscriptBox[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", "w"]]]], "]"]], "2"]]], "-", RowBox[List["2", " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", "w"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "w"]]], " ", SuperscriptBox["w", RowBox[List["1", "-", "a"]]], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", "w"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]]]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], " ", RowBox[List["Log", "[", "w", "]"]]]], "+", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", SuperscriptBox["w", RowBox[List["1", "-", RowBox[List["2", " ", "a"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], " ", RowBox[List["Log", "[", "w", "]"]]]], "+", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]], "2"]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["w", "a"]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["PolyGamma", "[", "a", "]"]], "2"]]], "+", RowBox[List["2", " ", "a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], " ", RowBox[List["Log", "[", "w", "]"]]]], "+", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["w", "a"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", "w", "]"]], "2"], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["w", "a"], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]]]]]], ")"]], " ", RowBox[List["Log", "[", "w", "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["w", "a"], "-", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["PolyGamma", "[", "a", "]"]], "2"]]], "+", RowBox[List[SuperscriptBox["w", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "z"]]]], ")"]], " ", SuperscriptBox[RowBox[List["Log", "[", "w", "]"]], "2"]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]]]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", "z"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 2 </mn> </msup> <mrow> <msup> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> w </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> w </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;w&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mi> w </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mi> w </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mi> a </mi> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mi> w </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msup> <mi> w </mi> <mi> a </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mi> w </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mi> a </mi> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> w </mi> <mi> a </mi> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mi> w </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> w </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> w </mi> <mi> a </mi> </msup> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mi> w </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> w </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mi> w </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> &#8290; </mo> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mi> w </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> w </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;w&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> w </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;w&quot;]], HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> w </mi> <mo> &#10869; </mo> <mrow> <msup> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> a </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> InverseGammaRegularized </ci> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> w </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> w </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <ci> a </ci> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ln /> <ci> w </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> <ci> w </ci> </apply> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> w </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ln /> <ci> w </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> <ci> w </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <apply> <ln /> <ci> w </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> <ci> w </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> w </ci> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ln /> <ci> w </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> w </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <ci> w </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> w </ci> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <plus /> <ci> w </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> <ci> w </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> w </ci> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <plus /> <ci> w </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> <ci> w </ci> </apply> </apply> </apply> </apply> <apply> <ln /> <ci> w </ci> </apply> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <cn type='integer'> 3 </cn> </apply> <ci> w </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <ci> w </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> w </ci> </apply> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <power /> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <ci> a </ci> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <ci> a </ci> <ci> a </ci> <ci> a </ci> </list> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <ci> w </ci> <apply> <ci> InverseGammaRegularized </ci> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", "2"]], "}"]]]]], RowBox[List["InverseGammaRegularized", "[", RowBox[List["a_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", "w", " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "3"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", SuperscriptBox[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", "w"]]]], "]"]], "2"]]], "-", RowBox[List["2", " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", "w"]]]], "]"]]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "w"]]], " ", SuperscriptBox["w", RowBox[List["1", "-", "a"]]], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "2"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "a"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "a"]]]], "}"]], ",", RowBox[List["-", "w"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]]]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], " ", RowBox[List["Log", "[", "w", "]"]]]], "+", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", SuperscriptBox["w", RowBox[List["1", "-", RowBox[List["2", " ", "a"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], " ", RowBox[List["Log", "[", "w", "]"]]]], "+", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]], "2"]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["w", "a"]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "-", "a", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["PolyGamma", "[", "a", "]"]], "2"]]], "+", RowBox[List["2", " ", "a", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], " ", RowBox[List["Log", "[", "w", "]"]]]], "+", RowBox[List["PolyGamma", "[", "a", "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["w", "a"], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["Log", "[", "w", "]"]], "2"], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["w", "a"], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]]]]]], ")"]], " ", RowBox[List["Log", "[", "w", "]"]], " ", RowBox[List["PolyGamma", "[", "a", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["w", "a"], "-", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", "w"], " ", RowBox[List["(", RowBox[List["1", "+", "w"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", ",", "w"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["PolyGamma", "[", "a", "]"]], "2"]]], "+", RowBox[List[SuperscriptBox["w", "a"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "z"]]]], ")"]], " ", SuperscriptBox[RowBox[List["Log", "[", "w", "]"]], "2"]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", "z"]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.