Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
InverseGammaRegularized






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > InverseGammaRegularized[a,z] > Differentiation > Low-order differentiation > With respect to z





http://functions.wolfram.com/06.12.20.0007.01









  


  










Input Form





D[InverseGammaRegularized[a, z], {z, 5}] == (-E^(5 w)) w^(1 - 5 a) (1 + 24 a^4 - 2 a^3 (25 + 48 w) + 2 w (1 + w) (13 + 12 w (3 + w)) + a^2 (35 + 4 w (49 + 36 w)) - 2 a (5 + w (63 + w (121 + 48 w)))) Gamma[a]^5 /; w == InverseGammaRegularized[a, z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "5"]], "}"]]], RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["5", " ", "w"]]]]], " ", SuperscriptBox["w", RowBox[List["1", "-", RowBox[List["5", " ", "a"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["24", " ", SuperscriptBox["a", "4"]]], "-", RowBox[List["2", " ", SuperscriptBox["a", "3"], " ", RowBox[List["(", RowBox[List["25", "+", RowBox[List["48", " ", "w"]]]], ")"]]]], "+", RowBox[List["2", " ", "w", " ", RowBox[List["(", RowBox[List["1", "+", "w"]], ")"]], " ", RowBox[List["(", RowBox[List["13", "+", RowBox[List["12", " ", "w", " ", RowBox[List["(", RowBox[List["3", "+", "w"]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List["35", "+", RowBox[List["4", " ", "w", " ", RowBox[List["(", RowBox[List["49", "+", RowBox[List["36", " ", "w"]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["w", " ", RowBox[List["(", RowBox[List["63", "+", RowBox[List["w", " ", RowBox[List["(", RowBox[List["121", "+", RowBox[List["48", " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "5"]]]]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", "z"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 5 </mn> </msup> <mrow> <msup> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> w </mi> </mrow> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 48 </mn> <mo> &#8290; </mo> <mi> w </mi> </mrow> <mo> + </mo> <mn> 25 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <mi> w </mi> </mrow> <mo> + </mo> <mn> 49 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 35 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 48 </mn> <mo> &#8290; </mo> <mi> w </mi> </mrow> <mo> + </mo> <mn> 121 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 63 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 5 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> w </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> w </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 13 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> w </mi> <mo> &#63449; </mo> <mrow> <msup> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 5 </cn> </degree> </bvar> <apply> <ci> InverseGammaRegularized </ci> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 5 </cn> <ci> w </ci> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 48 </cn> <ci> w </ci> </apply> <cn type='integer'> 25 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> w </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 36 </cn> <ci> w </ci> </apply> <cn type='integer'> 49 </cn> </apply> </apply> <cn type='integer'> 35 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <ci> w </ci> <apply> <plus /> <apply> <times /> <ci> w </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 48 </cn> <ci> w </ci> </apply> <cn type='integer'> 121 </cn> </apply> </apply> <cn type='integer'> 63 </cn> </apply> </apply> <cn type='integer'> 5 </cn> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> w </ci> <apply> <plus /> <ci> w </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 12 </cn> <ci> w </ci> <apply> <plus /> <ci> w </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 13 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <eq /> <ci> w </ci> <apply> <ci> InverseGammaRegularized </ci> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "5"]], "}"]]]]], RowBox[List["InverseGammaRegularized", "[", RowBox[List["a_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["5", " ", "w"]]]]], " ", SuperscriptBox["w", RowBox[List["1", "-", RowBox[List["5", " ", "a"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["24", " ", SuperscriptBox["a", "4"]]], "-", RowBox[List["2", " ", SuperscriptBox["a", "3"], " ", RowBox[List["(", RowBox[List["25", "+", RowBox[List["48", " ", "w"]]]], ")"]]]], "+", RowBox[List["2", " ", "w", " ", RowBox[List["(", RowBox[List["1", "+", "w"]], ")"]], " ", RowBox[List["(", RowBox[List["13", "+", RowBox[List["12", " ", "w", " ", RowBox[List["(", RowBox[List["3", "+", "w"]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "2"], " ", RowBox[List["(", RowBox[List["35", "+", RowBox[List["4", " ", "w", " ", RowBox[List["(", RowBox[List["49", "+", RowBox[List["36", " ", "w"]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["w", " ", RowBox[List["(", RowBox[List["63", "+", RowBox[List["w", " ", RowBox[List["(", RowBox[List["121", "+", RowBox[List["48", " ", "w"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "5"]]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", "z"]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.