Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
InverseGammaRegularized






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > InverseGammaRegularized[a,z] > Differentiation > Low-order differentiation > With respect to z





http://functions.wolfram.com/06.12.20.0010.01









  


  










Input Form





D[InverseGammaRegularized[a, z], {z, 8}] == E^(8 w) w^(1 - 8 a) (1 - a (28 + a (-322 + a (1960 + a (-6769 + 4 a (3283 + 9 a (-363 + 140 a)))))) + 247 w + a (-3579 + a (21289 + a (-66369 + 4 a (28438 + 45 a (-559 + 196 a))))) w - 6 (-1 + a) (-1 + 2 a) (-947 + a (5891 + 60 a (-206 + 147 a))) w^2 + 2 (-1 + a) (-17729 + 2 a (45001 + 90 a (-853 + 490 a))) w^3 - 20 (-1 + a) (4175 + 9 a (-1343 + 980 a)) w^4 + 36 (-1 + a) (-2323 + 2940 a) w^5 - 35280 (-1 + a) w^6 + 5040 w^7) Gamma[a]^8 /; w == InverseGammaRegularized[a, z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "8"]], "}"]]], RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["8", " ", "w"]]], " ", SuperscriptBox["w", RowBox[List["1", "-", RowBox[List["8", " ", "a"]]]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List["28", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "322"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["1960", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6769"]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List["3283", "+", RowBox[List["9", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "363"]], "+", RowBox[List["140", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["247", " ", "w"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3579"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["21289", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "66369"]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List["28438", "+", RowBox[List["45", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "559"]], "+", RowBox[List["196", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", "w"]], "-", RowBox[List["6", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "947"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["5891", "+", RowBox[List["60", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "206"]], "+", RowBox[List["147", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "2"]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "17729"]], "+", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List["45001", "+", RowBox[List["90", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "853"]], "+", RowBox[List["490", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "3"]]], "-", RowBox[List["20", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List["4175", "+", RowBox[List["9", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1343"]], "+", RowBox[List["980", " ", "a"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "4"]]], "+", RowBox[List["36", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2323"]], "+", RowBox[List["2940", " ", "a"]]]], ")"]], " ", SuperscriptBox["w", "5"]]], "-", RowBox[List["35280", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", SuperscriptBox["w", "6"]]], "+", RowBox[List["5040", " ", SuperscriptBox["w", "7"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "8"]]]]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", "z"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 8 </mn> </msup> <mrow> <msup> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> w </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> w </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5040 </mn> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 35280 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2940 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 2323 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 980 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1343 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 4175 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 90 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 490 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 853 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 45001 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 17729 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 60 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 147 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 206 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 5891 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 947 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 45 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 196 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 559 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 28438 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 66369 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 21289 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3579 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> w </mi> </mrow> <mo> + </mo> <mrow> <mn> 247 </mn> <mo> &#8290; </mo> <mi> w </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 140 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 363 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 3283 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 6769 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1960 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 322 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 28 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> w </mi> <mo> &#63449; </mo> <mrow> <msup> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 8 </cn> </degree> </bvar> <apply> <ci> InverseGammaRegularized </ci> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> w </ci> </apply> </apply> <apply> <power /> <ci> w </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 5040 </cn> <apply> <power /> <ci> w </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 35280 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2940 </cn> <ci> a </ci> </apply> <cn type='integer'> -2323 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 980 </cn> <ci> a </ci> </apply> <cn type='integer'> -1343 </cn> </apply> </apply> <cn type='integer'> 4175 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 90 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 490 </cn> <ci> a </ci> </apply> <cn type='integer'> -853 </cn> </apply> </apply> <cn type='integer'> 45001 </cn> </apply> </apply> <cn type='integer'> -17729 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 60 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 147 </cn> <ci> a </ci> </apply> <cn type='integer'> -206 </cn> </apply> </apply> <cn type='integer'> 5891 </cn> </apply> </apply> <cn type='integer'> -947 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 45 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 196 </cn> <ci> a </ci> </apply> <cn type='integer'> -559 </cn> </apply> </apply> <cn type='integer'> 28438 </cn> </apply> </apply> <cn type='integer'> -66369 </cn> </apply> </apply> <cn type='integer'> 21289 </cn> </apply> </apply> <cn type='integer'> -3579 </cn> </apply> <ci> w </ci> </apply> <apply> <times /> <cn type='integer'> 247 </cn> <ci> w </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 140 </cn> <ci> a </ci> </apply> <cn type='integer'> -363 </cn> </apply> </apply> <cn type='integer'> 3283 </cn> </apply> </apply> <cn type='integer'> -6769 </cn> </apply> </apply> <cn type='integer'> 1960 </cn> </apply> </apply> <cn type='integer'> -322 </cn> </apply> </apply> <cn type='integer'> 28 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <eq /> <ci> w </ci> <apply> <ci> InverseGammaRegularized </ci> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "8"]], "}"]]]]], RowBox[List["InverseGammaRegularized", "[", RowBox[List["a_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["8", " ", "w"]]], " ", SuperscriptBox["w", RowBox[List["1", "-", RowBox[List["8", " ", "a"]]]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List["28", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "322"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["1960", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6769"]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List["3283", "+", RowBox[List["9", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "363"]], "+", RowBox[List["140", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["247", " ", "w"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3579"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["21289", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "66369"]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List["28438", "+", RowBox[List["45", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "559"]], "+", RowBox[List["196", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", "w"]], "-", RowBox[List["6", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "947"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["5891", "+", RowBox[List["60", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "206"]], "+", RowBox[List["147", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "2"]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "17729"]], "+", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List["45001", "+", RowBox[List["90", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "853"]], "+", RowBox[List["490", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "3"]]], "-", RowBox[List["20", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List["4175", "+", RowBox[List["9", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1343"]], "+", RowBox[List["980", " ", "a"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "4"]]], "+", RowBox[List["36", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2323"]], "+", RowBox[List["2940", " ", "a"]]]], ")"]], " ", SuperscriptBox["w", "5"]]], "-", RowBox[List["35280", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", SuperscriptBox["w", "6"]]], "+", RowBox[List["5040", " ", SuperscriptBox["w", "7"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "8"]]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", "z"]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.