Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
InverseGammaRegularized






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > InverseGammaRegularized[a,z] > Differentiation > Low-order differentiation > With respect to z





http://functions.wolfram.com/06.12.20.0011.01









  


  










Input Form





D[InverseGammaRegularized[a, z], {z, 9}] == (-E^(9 w)) w^(1 - 9 a) (1 + a (-36 + a (546 + a (-4536 + a (22449 + 4 a (-16821 + a (29531 + 36 a (-761 + 280 a))))))) + 502 w - 2 a (4679 + a (-36893 + a (159365 + 4 a (-101576 + a (152039 + 36 a (-3403 + 1120 a)))))) w + 2 (-1 + a) (-1 + 2 a) (9511 + a (-87099 + 4 a (75437 + 45 a (-2619 + 1568 a)))) w^2 - 8 (-1 + a) (-1 + 2 a) (-23411 + 4 a (31337 + 45 a (-1265 + 784 a))) w^3 + 4 (-1 + a) (-175291 + a (829183 + 180 a (-7323 + 3920 a))) w^4 - 8 (-1 + a) (146221 + 36 a (-11243 + 7840 a)) w^5 + 144 (-1 + a) (-6361 + 7840 a) w^6 - 322560 (-1 + a) w^7 + 40320 w^8) Gamma[a]^9 /; w == InverseGammaRegularized[a, z]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "9"]], "}"]]], RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["9", " ", "w"]]]]], " ", SuperscriptBox["w", RowBox[List["1", "-", RowBox[List["9", " ", "a"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "36"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["546", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4536"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["22449", "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "16821"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["29531", "+", RowBox[List["36", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "761"]], "+", RowBox[List["280", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["502", " ", "w"]], "-", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List["4679", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "36893"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["159365", "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "101576"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["152039", "+", RowBox[List["36", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3403"]], "+", RowBox[List["1120", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", "w"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["(", RowBox[List["9511", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "87099"]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List["75437", "+", RowBox[List["45", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2619"]], "+", RowBox[List["1568", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "2"]]], "-", RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "23411"]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List["31337", "+", RowBox[List["45", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1265"]], "+", RowBox[List["784", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "3"]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "175291"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["829183", "+", RowBox[List["180", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7323"]], "+", RowBox[List["3920", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "4"]]], "-", RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List["146221", "+", RowBox[List["36", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "11243"]], "+", RowBox[List["7840", " ", "a"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "5"]]], "+", RowBox[List["144", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6361"]], "+", RowBox[List["7840", " ", "a"]]]], ")"]], " ", SuperscriptBox["w", "6"]]], "-", RowBox[List["322560", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", SuperscriptBox["w", "7"]]], "+", RowBox[List["40320", " ", SuperscriptBox["w", "8"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "9"]]]]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", "z"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 9 </mn> </msup> <mrow> <msup> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mi> w </mi> </mrow> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 9 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 40320 </mn> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 322560 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 144 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 7840 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 6361 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 7840 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 11243 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 146221 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 180 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3920 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 7323 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 829183 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 175291 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 45 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 784 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1265 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 31337 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 23411 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 45 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1568 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 2619 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 75437 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 87099 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 9511 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1120 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 3403 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 152039 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 101576 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 159365 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 36893 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 4679 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> w </mi> </mrow> <mo> + </mo> <mrow> <mn> 502 </mn> <mo> &#8290; </mo> <mi> w </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 280 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 761 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 29531 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 16821 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 22449 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 4536 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 546 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 36 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mn> 9 </mn> </msup> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> w </mi> <mo> &#63449; </mo> <mrow> <msup> <semantics> <mi> Q </mi> <annotation-xml encoding='MathML-Content'> <ci> GammaRegularized </ci> </annotation-xml> </semantics> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 9 </cn> </degree> </bvar> <apply> <ci> InverseGammaRegularized </ci> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 9 </cn> <ci> w </ci> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 40320 </cn> <apply> <power /> <ci> w </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 322560 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 144 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 7840 </cn> <ci> a </ci> </apply> <cn type='integer'> -6361 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 36 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 7840 </cn> <ci> a </ci> </apply> <cn type='integer'> -11243 </cn> </apply> </apply> <cn type='integer'> 146221 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 180 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3920 </cn> <ci> a </ci> </apply> <cn type='integer'> -7323 </cn> </apply> </apply> <cn type='integer'> 829183 </cn> </apply> </apply> <cn type='integer'> -175291 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 45 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 784 </cn> <ci> a </ci> </apply> <cn type='integer'> -1265 </cn> </apply> </apply> <cn type='integer'> 31337 </cn> </apply> </apply> <cn type='integer'> -23411 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 45 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 1568 </cn> <ci> a </ci> </apply> <cn type='integer'> -2619 </cn> </apply> </apply> <cn type='integer'> 75437 </cn> </apply> </apply> <cn type='integer'> -87099 </cn> </apply> </apply> <cn type='integer'> 9511 </cn> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 36 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 1120 </cn> <ci> a </ci> </apply> <cn type='integer'> -3403 </cn> </apply> </apply> <cn type='integer'> 152039 </cn> </apply> </apply> <cn type='integer'> -101576 </cn> </apply> </apply> <cn type='integer'> 159365 </cn> </apply> </apply> <cn type='integer'> -36893 </cn> </apply> </apply> <cn type='integer'> 4679 </cn> </apply> <ci> w </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 502 </cn> <ci> w </ci> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 36 </cn> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 280 </cn> <ci> a </ci> </apply> <cn type='integer'> -761 </cn> </apply> </apply> <cn type='integer'> 29531 </cn> </apply> </apply> <cn type='integer'> -16821 </cn> </apply> </apply> <cn type='integer'> 22449 </cn> </apply> </apply> <cn type='integer'> -4536 </cn> </apply> </apply> <cn type='integer'> 546 </cn> </apply> </apply> <cn type='integer'> -36 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <eq /> <ci> w </ci> <apply> <ci> InverseGammaRegularized </ci> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "9"]], "}"]]]]], RowBox[List["InverseGammaRegularized", "[", RowBox[List["a_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["9", " ", "w"]]]]], " ", SuperscriptBox["w", RowBox[List["1", "-", RowBox[List["9", " ", "a"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "36"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["546", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4536"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["22449", "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "16821"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["29531", "+", RowBox[List["36", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "761"]], "+", RowBox[List["280", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["502", " ", "w"]], "-", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List["4679", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "36893"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["159365", "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "101576"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["152039", "+", RowBox[List["36", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3403"]], "+", RowBox[List["1120", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", "w"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["(", RowBox[List["9511", "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "87099"]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List["75437", "+", RowBox[List["45", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2619"]], "+", RowBox[List["1568", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "2"]]], "-", RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "23411"]], "+", RowBox[List["4", " ", "a", " ", RowBox[List["(", RowBox[List["31337", "+", RowBox[List["45", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1265"]], "+", RowBox[List["784", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "3"]]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "175291"]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["829183", "+", RowBox[List["180", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "7323"]], "+", RowBox[List["3920", " ", "a"]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "4"]]], "-", RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List["146221", "+", RowBox[List["36", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "11243"]], "+", RowBox[List["7840", " ", "a"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox["w", "5"]]], "+", RowBox[List["144", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6361"]], "+", RowBox[List["7840", " ", "a"]]]], ")"]], " ", SuperscriptBox["w", "6"]]], "-", RowBox[List["322560", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], ")"]], " ", SuperscriptBox["w", "7"]]], "+", RowBox[List["40320", " ", SuperscriptBox["w", "8"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Gamma", "[", "a", "]"]], "9"]]], "/;", RowBox[List["w", "\[Equal]", RowBox[List["InverseGammaRegularized", "[", RowBox[List["a", ",", "z"]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.