Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











LogIntegral






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > LogIntegral[z] > Series representations > Generalized power series > Expansions on branch cuts > For the function itself





http://functions.wolfram.com/06.36.06.0019.01









  


  










Input Form





LogIntegral[z] \[Proportional] (-Floor[Arg[z - x]/(2 Pi)]) ExpIntegralEi[Log[-x] - I Pi] + (Floor[Arg[z - x]/(2 Pi)] + 1) LogIntegral[x] + (z - x)/Log[x] - (z - x)^2/(x Log[x]^2) + O[(z - x)^3] /; Element[x, Reals] && x < 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LogIntegral", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["Log", "[", RowBox[List["-", "x"]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", "1"]], ")"]], " ", RowBox[List["LogIntegral", "[", "x", "]"]]]], "+", FractionBox[RowBox[List["z", "-", "x"]], RowBox[List["Log", "[", "x", "]"]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "2"], RowBox[List["x", " ", SuperscriptBox[RowBox[List["Log", "[", "x", "]"]], "2"]]]], "+", RowBox[List["O", "[", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "3"], "]"]]]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "\[And]", RowBox[List["x", "<", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> li </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> li </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mfrac> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mi> x </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> x </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> x </mi> <mo> &lt; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> LogIntegral </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> LogIntegral </ci> <ci> x </ci> </apply> </apply> <apply> <times /> <apply> <ci> ExpIntegralEi </ci> <apply> <plus /> <apply> <ln /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> x </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> x </ci> <apply> <power /> <apply> <ln /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> O </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> x </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> x </ci> <reals /> </apply> <apply> <lt /> <ci> x </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LogIntegral", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]]]], " ", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["Log", "[", RowBox[List["-", "x"]], "]"]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Floor", "[", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "x"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]], "]"]], "+", "1"]], ")"]], " ", RowBox[List["LogIntegral", "[", "x", "]"]]]], "+", FractionBox[RowBox[List["z", "-", "x"]], RowBox[List["Log", "[", "x", "]"]]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "x"]], ")"]], "2"], RowBox[List["x", " ", SuperscriptBox[RowBox[List["Log", "[", "x", "]"]], "2"]]]], "+", SuperscriptBox[RowBox[List["O", "[", RowBox[List["z", "-", "x"]], "]"]], "3"]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "&&", RowBox[List["x", "<", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.