Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Multinomial






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > Multinomial[n1,n2,...,nm] > Series representations > Asymptotic series expansions





http://functions.wolfram.com/06.04.06.0002.01









  


  










Input Form





Multinomial[Subscript[n, 1], Subscript[n, 2], \[Ellipsis], Subscript[n, m]] \[Proportional] (Subscript[n, 1]^(a - 1)/Product[Gamma[Subscript[n, k] + 1], {k, 2, m}]) (1 + ((a - 1) a)/(2 Subscript[n, 1]) + O[1/Subscript[n, 1]^2]) /; (Abs[Subscript[n, 1]] -> Infinity) && a == 1 + Sum[Subscript[n, k], {k, 2, m}] && Abs[Arg[Subscript[n, 1] + a]] < Pi










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Multinomial", "[", RowBox[List[SubscriptBox["n", "1"], ",", SubscriptBox["n", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["n", "m"]]], "]"]], "\[Proportional]", RowBox[List[FractionBox[SubsuperscriptBox["n", "1", RowBox[List["a", "-", "1"]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "2"]], "m"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["n", "k"], "+", "1"]], "]"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "1"]], ")"]], "a"]], RowBox[List["2", SubscriptBox["n", "1"]]]], "+", RowBox[List["O", "[", FractionBox["1", SubsuperscriptBox["n", "1", "2"]], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["n", "1"], "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["a", "\[Equal]", RowBox[List["1", "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "m"], SubscriptBox["n", "k"]]]]]]], "\[And]", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", RowBox[List[SubscriptBox["n", "1"], "+", "a"]], "]"]], "]"]], "<", "\[Pi]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mo> &#8230; </mo> <mo> + </mo> <msub> <mi> n </mi> <mi> m </mi> </msub> </mrow> <mo> ; </mo> <msub> <mi> n </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> n </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> n </mi> <mi> m </mi> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[RowBox[List[RowBox[List[SubscriptBox[&quot;n&quot;, &quot;1&quot;], &quot;+&quot;, SubscriptBox[&quot;n&quot;, &quot;2&quot;], &quot;+&quot;, &quot;\[Ellipsis]&quot;, &quot;+&quot;, SubscriptBox[&quot;n&quot;, &quot;m&quot;]]], &quot;;&quot;, SubscriptBox[&quot;n&quot;, &quot;1&quot;]]], &quot;,&quot;, SubscriptBox[&quot;n&quot;, &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, SubscriptBox[&quot;n&quot;, &quot;m&quot;]]], &quot;)&quot;]], Multinomial, Rule[Editable, True]] </annotation> </semantics> <mo> &#8733; </mo> <mrow> <mfrac> <msubsup> <mi> n </mi> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msubsup> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> n </mi> <mi> k </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> n </mi> <mn> 1 </mn> </msub> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msubsup> <mi> n </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <msub> <mi> n </mi> <mn> 1 </mn> </msub> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> a </mi> <mo> &#10869; </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> m </mi> </munderover> <msub> <mi> n </mi> <mi> k </mi> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <msub> <mi> n </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mi> &#960; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> Multinomial </ci> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#8230; </ci> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <ci> a </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <infinity /> </apply> <apply> <eq /> <ci> a </ci> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <ci> Subscript </ci> <ci> n </ci> <ci> k </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <lt /> <apply> <abs /> <apply> <arg /> <apply> <plus /> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <pi /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Multinomial", "[", RowBox[List[SubscriptBox["n_", "1"], ",", SubscriptBox["n_", "2"], ",", "\[Ellipsis]_", ",", SubscriptBox["n_", "m_"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SubsuperscriptBox["nn", "1", RowBox[List["a", "-", "1"]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "1"]], ")"]], " ", "a"]], RowBox[List["2", " ", SubscriptBox["nn", "1"]]]], "+", RowBox[List["SeriesData", "[", RowBox[List[SubscriptBox["nn", "1"], ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", "2"]], "]"]]]], ")"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "2"]], "m"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["nn", "k"], "+", "1"]], "]"]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", SubscriptBox["nn", "1"], "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["a", "\[Equal]", RowBox[List["1", "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "m"], SubscriptBox["nn", "k"]]]]]]], "&&", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Arg", "[", RowBox[List[SubscriptBox["nn", "1"], "+", "a"]], "]"]], "]"]], "<", "\[Pi]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.