Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyGamma






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > PolyGamma[nu,z] > Specific values > Specialized values > For fixed z





http://functions.wolfram.com/06.15.03.0034.01









  


  










Input Form





PolyGamma[-4, z] == (1/144) (z^2 (-11 + 72 Log[Glaisher] + z (22 - 11 z + 12 Log[2 Pi])) - 24 z^3 Log[z] + (18 z Zeta[3])/Pi^2 - 24 Derivative[1][Zeta][-3] + 24 Derivative[1, 0][Zeta][-3, 1 + z])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "4"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "144"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "11"]], "+", RowBox[List["72", " ", RowBox[List["Log", "[", "Glaisher", "]"]]]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["22", "-", RowBox[List["11", " ", "z"]], "+", RowBox[List["12", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["24", " ", SuperscriptBox["z", "3"], " ", RowBox[List["Log", "[", "z", "]"]]]], "+", FractionBox[RowBox[List["18", " ", "z", " ", RowBox[List["Zeta", "[", "3", "]"]]]], SuperscriptBox["\[Pi]", "2"]], "-", RowBox[List["24", " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["-", "3"]], "]"]]]], "+", RowBox[List["24", " ", RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["-", "3"]], ",", RowBox[List["1", "+", "z"]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 144 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 24 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 72 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <semantics> <mi> A </mi> <annotation encoding='Mathematica'> TagBox[&quot;A&quot;, Function[List[], Glaisher]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 11 </mn> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 22 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 11 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 18 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mfrac> <mo> - </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> &#950; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <mrow> <msup> <mi> &#950; </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> , </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> PolyGamma </ci> <cn type='integer'> -4 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 144 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -24 </cn> <apply> <ln /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 72 </cn> <apply> <ln /> <ci> Glaisher </ci> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -11 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> <cn type='integer'> 22 </cn> </apply> </apply> <cn type='integer'> -11 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 18 </cn> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <cn type='integer'> -3 </cn> </apply> <cn type='integer'> -3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <ci> Zeta </ci> </apply> <cn type='integer'> -3 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "4"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "144"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "11"]], "+", RowBox[List["72", " ", RowBox[List["Log", "[", "Glaisher", "]"]]]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["22", "-", RowBox[List["11", " ", "z"]], "+", RowBox[List["12", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["24", " ", SuperscriptBox["z", "3"], " ", RowBox[List["Log", "[", "z", "]"]]]], "+", FractionBox[RowBox[List["18", " ", "z", " ", RowBox[List["Zeta", "[", "3", "]"]]]], SuperscriptBox["\[Pi]", "2"]], "-", RowBox[List["24", " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List["-", "3"]], "]"]]]], "+", RowBox[List["24", " ", RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["-", "3"]], ",", RowBox[List["1", "+", "z"]]]], "]"]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02