Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyGamma






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > PolyGamma[nu,z] > Series representations > Asymptotic series expansions





http://functions.wolfram.com/06.15.06.0044.01









  


  










Input Form





PolyGamma[-n, z] \[Proportional] z^n Sum[(1/(z^(2 k) ((2 k)! Gamma[1 - 2 k + n]))) ((Log[z] - EulerGamma - PolyGamma[1 - 2 k + n]) BernoulliB[2 k] + (2 k - n) (((-1)^k (2 k)! Zeta[2 k + 1])/(2^(2 k + 1) Pi^(2 k) z))), {k, 1, Floor[n/2]}] + z^n Sum[(((-1)^(n - 1) (2 k - n - 1)!)/(z^(2 k) (2 k)!)) BernoulliB[2 k], {k, Floor[n/2] + 1, Infinity}] + (z^(n - 2)/2) Sum[((2 k - n + 1)/(z^(2 k) ((2 k + 1)! (k + 1) (n - 2 k - 1)!))) (2 (k + 1) Derivative[1][Zeta][-2 k - 1] - BernoulliB[2 k + 2] HarmonicNumber[2 k + 1]), {k, 1, Floor[(n - 1)/2]}] - (z^(n - 1) (2 z HarmonicNumber[n] - n Log[2 Pi] - 2 z Log[z]))/(2 n!) + (z^(-2 + n)/(2 (n - 1)!)) (-2 (1 - n) Log[Glaisher] + z (EulerGamma - Log[z] + PolyGamma[n])) /; (Abs[z] -> Infinity) && Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "n"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[SuperscriptBox["z", "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["Floor", "[", RowBox[List["n", "/", "2"]], "]"]]], RowBox[List[FractionBox[SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], "k"]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", "k"]], ")"]], "!"]], RowBox[List["Gamma", "[", RowBox[List["1", "-", RowBox[List["2", "k"]], "+", "n"]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "z", "]"]], "-", "EulerGamma", "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", RowBox[List["2", "k"]], "+", "n"]], "]"]]]], ")"]], RowBox[List["BernoulliB", "[", RowBox[List["2", "k"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "-", "n"]], ")"]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], RowBox[List[RowBox[List["(", RowBox[List["2", "k"]], ")"]], "!"]], RowBox[List["Zeta", "[", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], "]"]]]], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", "k"]], "+", "1"]]], SuperscriptBox["\[Pi]", RowBox[List["2", "k"]]], "z"]]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["z", "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List[RowBox[List["Floor", "[", RowBox[List["n", "/", "2"]], "]"]], "+", "1"]]]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], "k"]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "-", "n", "-", "1"]], ")"]], "!"]]]], RowBox[List[RowBox[List["(", RowBox[List["2", "k"]], ")"]], "!"]]], RowBox[List["BernoulliB", "[", RowBox[List["2", "k"]], "]"]]]]]]]], "+", RowBox[List[FractionBox[SuperscriptBox["z", RowBox[List["n", "-", "2"]]], "2"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["Floor", "[", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "/", "2"]], "]"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "-", "n", "+", "1"]], ")"]], SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], "k"]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], ")"]], "!"]], RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", RowBox[List["2", "k"]], "-", "1"]], ")"]], "!"]]]]], RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", RowBox[List[RowBox[List[RowBox[List["Derivative", "[", "1", "]"]], "[", "Zeta", "]"]], "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "k"]], "-", "1"]], "]"]]]], "-", RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List[RowBox[List["2", "k"]], "+", "2"]], "]"]], RowBox[List["HarmonicNumber", "[", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], "]"]]]]]], ")"]]]]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["n", "-", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z", " ", RowBox[List["HarmonicNumber", "[", "n", "]"]]]], "-", RowBox[List["n", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["2", " ", "z", " ", RowBox[List["Log", "[", "z", "]"]]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List["n", "!"]]]]], "+", RowBox[List[FractionBox[SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], "+", "n"]]], RowBox[List["2", " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "-", "n"]], ")"]], " ", RowBox[List["Log", "[", "Glaisher", "]"]]]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", "n", "]"]]]], ")"]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <msub> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mi> n </mi> </msub> </mrow> <mo> - </mo> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <mfrac> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;k&quot;]], &quot;+&quot;, &quot;1&quot;]], Zeta, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]]] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msub> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> + </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <semantics> <mi> A </mi> <annotation encoding='Mathematica'> TagBox[&quot;A&quot;, Function[List[], Glaisher]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> &#950; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <mo> &#8290; </mo> <msub> <semantics> <mi> H </mi> <annotation-xml encoding='MathML-Content'> <ci> HarmonicNumber </ci> </annotation-xml> </semantics> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <factorial /> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <ci> HarmonicNumber </ci> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <pi /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <ci> BernoulliB </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <plus /> <apply> <ln /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <eulergamma /> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <apply> <plus /> <apply> <floor /> <apply> <times /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <ci> PolyGamma </ci> <ci> n </ci> </apply> <eulergamma /> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <ln /> <ci> Glaisher </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> BernoulliB </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> HarmonicNumber </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["-", "n_"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["z", "n"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]]], FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], " ", "k"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "z", "]"]], "-", "EulerGamma", "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", RowBox[List["2", " ", "k"]], "+", "n"]], "]"]]]], ")"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "k"]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], "]"]]]], ")"]]]], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]]], " ", SuperscriptBox["\[Pi]", RowBox[List["2", " ", "k"]]], " ", "z"]]]]], ")"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", RowBox[List["2", " ", "k"]], "+", "n"]], "]"]]]]]]]]], "+", RowBox[List[SuperscriptBox["z", "n"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List[RowBox[List["Floor", "[", FractionBox["n", "2"], "]"]], "+", "1"]]]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], " ", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "n", "-", "1"]], ")"]], "!"]]]], ")"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "k"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["2", " ", "k"]], ")"]], "!"]]]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox["z", RowBox[List["n", "-", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["n", "-", "1"]], "2"], "]"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "n", "+", "1"]], ")"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], " ", "k"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "-", "1"]], "]"]]]], "-", RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List[RowBox[List["2", " ", "k"]], "+", "2"]], "]"]], " ", RowBox[List["HarmonicNumber", "[", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], "]"]]]]]], ")"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], ")"]], "!"]], " ", RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", RowBox[List["2", " ", "k"]], "-", "1"]], ")"]], "!"]]]]]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["n", "-", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z", " ", RowBox[List["HarmonicNumber", "[", "n", "]"]]]], "-", RowBox[List["n", " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["2", " ", "z", " ", RowBox[List["Log", "[", "z", "]"]]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List["n", "!"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List[RowBox[List["-", "2"]], "+", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "-", "n"]], ")"]], " ", RowBox[List["Log", "[", "Glaisher", "]"]]]], "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["EulerGamma", "-", RowBox[List["Log", "[", "z", "]"]], "+", RowBox[List["PolyGamma", "[", "n", "]"]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.