Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyGamma






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > PolyGamma[nu,z] > Series representations > Other series representations





http://functions.wolfram.com/06.15.06.0051.01









  


  










Input Form





PolyGamma[\[Nu], z] == (-((Log[z] - PolyGamma[-\[Nu]] - EulerGamma)/Gamma[-\[Nu]])) z^(-\[Nu] - 1) - EulerGamma/(z^\[Nu] Gamma[1 - \[Nu]]) - (Gamma[1 + \[Nu]] (-z)^\[Nu] Zeta[1 + \[Nu], 1 + z])/z^\[Nu] - z^(1 - \[Nu]) (Gamma[1 + \[Nu]]/Gamma[1 - \[Nu]]) Sum[(1/k^2) Hypergeometric2F1Regularized[1, 2, 2 + \[Nu], 1 + z/k], {k, 1, Infinity}] /; !Element[\[Nu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["Log", "[", "z", "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], "-", "EulerGamma"]], RowBox[List[" ", RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]]]]]], SuperscriptBox["z", RowBox[List[RowBox[List["-", "\[Nu]"]], "-", "1"]]]]], "-", FractionBox[RowBox[List["EulerGamma", " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "\[Nu]"], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["1", "+", "z"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["z", RowBox[List["1", "-", "\[Nu]"]]], FractionBox[RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox["1", SuperscriptBox["k", "2"]], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["1", ",", "2", ",", RowBox[List["2", "+", "\[Nu]"]], ",", RowBox[List["1", "+", FractionBox["z", "k"]]]]], "]"]]]]]]]]]]]], "/;", RowBox[List["Not", "[", RowBox[List["\[Nu]", "\[Element]", "Integers"]], "]"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mi> &#957; </mi> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> - </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;1&quot;]], Zeta, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;z&quot;, &quot;+&quot;, &quot;1&quot;]], Zeta, Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$], Zeta[ZetaDump`e1$, ZetaDump`e2$]]]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> </mrow> <mo> - </mo> <mfrac> <mrow> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <msup> <mi> k </mi> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mi> z </mi> <mi> k </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;2&quot;, Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;2&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[FractionBox[&quot;z&quot;, &quot;k&quot;], &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> &#957; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> PolyGamma </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <ln /> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <eulergamma /> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <ci> &#957; </ci> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <eulergamma /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <cn type='integer'> 1 </cn> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <ci> &#957; </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyGamma", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "z", "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["-", "\[Nu]"]], "]"]], "-", "EulerGamma"]], ")"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "\[Nu]"]], "-", "1"]]]]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Nu]"]], "]"]]]]], "-", FractionBox[RowBox[List["EulerGamma", " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], " ", SuperscriptBox["z", RowBox[List["-", "\[Nu]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "\[Nu]"], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", RowBox[List["1", "+", "z"]]]], "]"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "-", "\[Nu]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["1", ",", "2", ",", RowBox[List["2", "+", "\[Nu]"]], ",", RowBox[List["1", "+", FractionBox["z", "k"]]]]], "]"]], SuperscriptBox["k", "2"]]]]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]]]], "/;", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.