html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 SinIntegral

 http://functions.wolfram.com/06.37.21.0019.01

 Input Form

 Integrate[z^3 E^(b z) SinIntegral[a z], z] == (1/b^4) (3 I (ExpIntegralEi[((-I) a + b) z] - ExpIntegralEi[(I a + b) z]) - (1/(a^2 + b^2)^3) (b E^(b z) ((-a) (b^4 (18 - 7 b z + b^2 z^2) + 2 a^2 b^2 (8 - 5 b z + b^2 z^2) + a^4 (6 - 3 b z + b^2 z^2)) Cos[a z] + b (b^4 (11 - 5 b z + b^2 z^2) + 2 a^2 b^2 (3 - 3 b z + b^2 z^2) + a^4 (3 - b z + b^2 z^2)) Sin[a z])) + E^(b z) (-6 + 6 b z - 3 b^2 z^2 + b^3 z^3) SinIntegral[a z])

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", "z"]]], " ", RowBox[List["SinIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", SuperscriptBox["b", "4"]], RowBox[List["(", RowBox[List[RowBox[List["3", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "3"]], RowBox[List["(", RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "4"], " ", RowBox[List["(", RowBox[List["18", "-", RowBox[List["7", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["8", "-", RowBox[List["5", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "4"], " ", RowBox[List["(", RowBox[List["6", "-", RowBox[List["3", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "4"], " ", RowBox[List["(", RowBox[List["11", "-", RowBox[List["5", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["3", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "4"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6"]], "+", RowBox[List["6", " ", "b", " ", "z"]], "-", RowBox[List["3", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[SuperscriptBox["b", "3"], " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["SinIntegral", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]]]]]]]]

 MathML Form

 z 3 b z Si ( a z ) z 1 b 4 ( 3 ( Ei ( ( b - a ) z ) - Ei ( ( b + a ) z ) ) - 1 ( a 2 + b 2 ) 3 ( b b z ( b ( ( b 2 z 2 - b z + 3 ) a 4 + 2 b 2 ( b 2 z 2 - 3 b z + 3 ) a 2 + b 4 ( b 2 z 2 - 5 b z + 11 ) ) sin ( a z ) - a ( ( b 2 z 2 - 3 b z + 6 ) a 4 + 2 b 2 ( b 2 z 2 - 5 b z + 8 ) a 2 + b 4 ( b 2 z 2 - 7 b z + 18 ) ) cos ( a z ) ) ) + b z ( b 3 z 3 - 3 b 2 z 2 + 6 b z - 6 ) Si ( a z ) ) z z 3 b z SinIntegral a z 1 b 4 -1 3 ExpIntegralEi b -1 a z -1 ExpIntegralEi b a z -1 1 a 2 b 2 3 -1 b b z b b 2 z 2 -1 b z 3 a 4 2 b 2 b 2 z 2 -1 3 b z 3 a 2 b 4 b 2 z 2 -1 5 b z 11 a z -1 a b 2 z 2 -1 3 b z 6 a 4 2 b 2 b 2 z 2 -1 5 b z 8 a 2 b 4 b 2 z 2 -1 7 b z 18 a z b z b 3 z 3 -1 3 b 2 z 2 6 b z -6 SinIntegral a z [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "3"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b_", " ", "z_"]]], " ", RowBox[List["SinIntegral", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["3", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]]]], ")"]]]], "-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "4"], " ", RowBox[List["(", RowBox[List["18", "-", RowBox[List["7", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["8", "-", RowBox[List["5", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "4"], " ", RowBox[List["(", RowBox[List["6", "-", RowBox[List["3", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["a", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "4"], " ", RowBox[List["(", RowBox[List["11", "-", RowBox[List["5", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["3", " ", "b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["a", "4"], " ", RowBox[List["(", RowBox[List["3", "-", RowBox[List["b", " ", "z"]], "+", RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "3"]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["b", " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6"]], "+", RowBox[List["6", " ", "b", " ", "z"]], "-", RowBox[List["3", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[SuperscriptBox["b", "3"], " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["SinIntegral", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], SuperscriptBox["b", "4"]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29