Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











SinIntegral






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > SinIntegral[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving hyperbolic functions and a power function > Involving cosh and power





http://functions.wolfram.com/06.37.21.0043.01









  


  










Input Form





Integrate[z^2 Cosh[b z] SinIntegral[a z], z] == (-(1/(4 b^3))) (I ((1/(a^2 + b^2)^2) (2 (a^2 + b^2)^2 (ExpIntegralEi[((-I) a + b) z] - ExpIntegralEi[(I a + b) z] - ExpIntegralEi[(-I) a z - b z] + ExpIntegralEi[I a z - b z]) - 4 I b^2 Sin[a z] (b (a^2 + b^2) z Cosh[b z] - (a^2 + 3 b^2) Sinh[b z]) + 4 I a b Cos[a z] (-2 (a^2 + 2 b^2) Cosh[b z] + b (a^2 + b^2) z Sinh[b z])) + 2 I (Gamma[3, (-b) z] - Gamma[3, b z]) SinIntegral[a z]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "2"], " ", RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]], RowBox[List["SinIntegral", "[", RowBox[List["a", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["4", " ", SuperscriptBox["b", "3"]]]]]], RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "2"]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", "z"]], "-", RowBox[List["b", " ", "z"]]]], "]"]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", "z"]], "-", RowBox[List["b", " ", "z"]]]], "]"]]]], ")"]]]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", SuperscriptBox["b", "2"], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", "z", " ", RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["3", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "a", " ", "b", " ", RowBox[List["Cos", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["2", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", "z", " ", RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["3", ",", RowBox[List[RowBox[List["-", "b"]], " ", "z"]]]], "]"]], "-", RowBox[List["Gamma", "[", RowBox[List["3", ",", RowBox[List["b", " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["SinIntegral", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Si </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> Ei </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> , </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Si </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <cosh /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <ci> SinIntegral </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <imaginaryi /> <apply> <sin /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> z </ci> <apply> <cosh /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <imaginaryi /> <apply> <cos /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> z </ci> <apply> <sinh /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> ExpIntegralEi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <imaginaryi /> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> ExpIntegralEi </ci> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <ci> ExpIntegralEi </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <plus /> <apply> <ci> Gamma </ci> <cn type='integer'> 3 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Gamma </ci> <cn type='integer'> 3 </cn> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <ci> SinIntegral </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "2"], " ", RowBox[List["Cosh", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", RowBox[List["SinIntegral", "[", RowBox[List["a_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b"]], ")"]], " ", "z"]], "]"]], "-", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a", " ", "z"]], "-", RowBox[List["b", " ", "z"]]]], "]"]], "+", RowBox[List["ExpIntegralEi", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a", " ", "z"]], "-", RowBox[List["b", " ", "z"]]]], "]"]]]], ")"]]]], "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", SuperscriptBox["b", "2"], " ", RowBox[List["Sin", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", "z", " ", RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["3", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "a", " ", "b", " ", RowBox[List["Cos", "[", RowBox[List["a", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", RowBox[List["2", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", RowBox[List["Cosh", "[", RowBox[List["b", " ", "z"]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], " ", "z", " ", RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]]]]]], ")"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["b", "2"]]], ")"]], "2"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["3", ",", RowBox[List[RowBox[List["-", "b"]], " ", "z"]]]], "]"]], "-", RowBox[List["Gamma", "[", RowBox[List["3", ",", RowBox[List["b", " ", "z"]]]], "]"]]]], ")"]], " ", RowBox[List["SinIntegral", "[", RowBox[List["a", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List["4", " ", SuperscriptBox["b", "3"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.